Lecture 6: Machine-level program representation

David Hovemeyer

February 2, 2026

601.229 Computer Systems Fundamentals

=N

S il:,’

Compiling and executing a C program

Compilation

» There are many high-level programming languages (Java, Python, C,
C++, ..)

Compilation

» There are many high-level programming languages (Java, Python, C,
C++, ..)
» A computer can only directly execute machine code

Compilation

» There are many high-level programming languages (Java, Python, C,
C++, ..)

» A computer can only directly execute machine code

» So, translation from high-level language code to machine code is necessary

> Strategies:

Compilation

» There are many high-level programming languages (Java, Python, C,
C++, ..)

» A computer can only directly execute machine code

» So, translation from high-level language code to machine code is necessary

> Strategies:

» Interpretation: a program “interprets” the high-level code and carries
out the specified computation

Compilation

» There are many high-level programming languages (Java, Python, C,
C++, ..)

» A computer can only directly execute machine code

» So, translation from high-level language code to machine code is necessary

> Strategies:

» Interpretation: a program “interprets” the high-level code and carries
out the specified computation

» Compilation: a compiler program translates the high-level code into
machine code

Compilation

» There are many high-level programming languages (Java, Python, C,
C++, ..)

» A computer can only directly execute machine code

» So, translation from high-level language code to machine code is necessary

> Strategies:

» Interpretation: a program “interprets” the high-level code and carries
out the specified computation

» Compilation: a compiler program translates the high-level code into
machine code

» Hybrid strategies are possible (e.g., Java Virtual Machine)

Compiling C code

Example C program:

#include <stdio.h>
#include <stdlib.h>

long times10(long x) {
long result = (x << 3) + (x << 1);
return result;

}

int main(void) {
printf ("Enter value: ");
long x;
scanf ("%1d", &x);
long y = times10(x);
printf ("Result=/1ld\n", y);
return O;

Compiling a C program

C source code Assembly code Object code Executable

cprog.c :> cprog.s :> cprog.o :> cprog

Compile Assemble Link

gcc -S cprog.c gcc -c cprog.s gcc -0 cprog cprog.o

Compile and assemble steps are often combined (convert .c to .0), but they
are still separate steps

C vs. assembly code

C code: Assembly code:
long times10(long x) { times10:
long result = leaq (%rdi,%rdi), %rax
(x << 3) + (x << 1); leaq (%rax,%rdi,8), %rax
return result; ret

Assembly vs. machine code

Assembly code must be assembled into machine code:

Assembly code: Machine code:
times10:
leaq (%rdi,%rdi), Y%rax 48 8d 04 3f
leaq (%rax,%rdi,8), %rax 48 8d 04 f8
ret c3

The CPU can directly decode and execute machine instructions

x86-64 assembly programming

Why learn assembly language?

» Since compilers exist, why learn how to write assembly code?

Why learn assembly language?

» Since compilers exist, why learn how to write assembly code?
» Have complete control over hardware

Why learn assembly language?

» Since compilers exist, why learn how to write assembly code?
» Have complete control over hardware
» Understand hardware-level program execution
» Important for understanding security vulnerabilities, and how to avoid
introducing them

Why learn assembly language?

» Since compilers exist, why learn how to write assembly code?

» Have complete control over hardware
» Understand hardware-level program execution

» Important for understanding security vulnerabilities, and how to avoid
introducing them

» Optimize performance-critical code

Why learn assembly language?

» Since compilers exist, why learn how to write assembly code?
» Have complete control over hardware
» Understand hardware-level program execution
» Important for understanding security vulnerabilities, and how to avoid
introducing them
» Optimize performance-critical code
» Implement code generators (compilers, JIT compilers)

x86-64 architecture

Selected “x86" processors
CPU Vendor Year Bits Note

8086 Intel 1978 16
80386 Intel 1985 32 32-bit, virtual memory
Pentium Intel 1993 32
Pentium Pro Intel 1995 32
Pentium Il Intel 1999 32

Pentium 4 Intel 2004 32
Opteron AMD 2003 64 First 64-bit x86 (“AMD64")

Subsequent Intel CPUs adopted the AMD64 architecture (calling it "EM64T")
Often called “x86-64" or just “x64"

x86-64 registers

Register(s) Note
hrip Instruction pointer
hrax Function return value

%rdi, %rsi
%rbx, %rcx, %rdx

hrsp, %rbp Stack pointer, frame pointer
%8, %r9, ..., %ri1b

All of these registers are 64 bits (8 bytes)

Aside from %rip and Jrsp, all of these are general-purpose registers

» For historical reasons (evolution of x86 architecture from 16 to 64 bits),
each data register is divided into
» Low byte
» Second lowest byte
> Lowest 2 bytes (16 bits)
» Lowest 4 bytes (32 bits)

» E.g., %rax register has %al, %ah, %ax, %eax:

rax

eax

ax

ah| al

63 32 16 8 O

» Conceptually, memory is a big array of byte-sized storage locations
» Each location has an address
» In x86-64, addresses are 64 bit, so 2°* addresses

» In reality, there are additional details:
» Actual x86-64 processors don't use all of the address bits
» Virtual memory creates an arbitrary mapping of address to physical

memory
» Virtual memory is mapped “sparsely”: only some ranges of addresses
are mapped to actual memory

A C program

#include <stdio.h>

char buf [1000];
int arr([21];

int main(void) {
int i, j;
fgets(buf, 1000, stdin);
for (i = 0; i < 21; i++)
sscanf (buf + i*2, "%2x", &arrl[i]);
for (i = 0; i < 21; i++)
printf ("Ycks", arr[i], (i+1)%7 == 0 7 "\n" : "");
return O;

Running the C program

$ gcc -o art art.c

$./art

7C5C2D2D2D2F7C7C206F5F6F207C205C5F5ESF2F20
I\--=/1
| o_o |

"/

Memory layout of C program

Using the pmap command to inspect the memory map of the running program:

29208: ./art

0000562d71c36000 4K r-x-- art
0000562d71e36000 4K r---- art
0000562d71e37000 4K rw--- art
0000562d735£c000 132K rw--- [anon]
00007£7b5b9a5000 1948K r-x-- libc-2.27.so0
00007£7b5bb8c000 2048K ----- 1libc-2.27.s0
00007£7b5bd8c000 16K r—-—-—- 1libc-2.27.so
00007£7b5bd90000 8K rw--- 1libc-2.27.so
00007£7b5bd92000 16K rw--- [anon]
00007£7b5bd96000 156K r-x-- 1d-2.27.so
00007£7b5bfa0000 8K rw--- [anon]
00007£7b5bfbd000 4K r---- 1d-2.27.so
00007£7b5bfbe000 4K rw--- 1d-2.27.so
00007£7b5bfbf000 4K rw--- [anon]
00007£££84484000 132K rw--- [stack]
00007£££845d4000 12K r---- [anon]
00007£££845d7000 8K r-x-- [anon]
fEEE££££££600000 4K r-x-- [anon]

total 4512K

» The stack is an extremely important runtime data structure
» s a stack of activation records, a.k.a. “stack frames”
» A stack frame represents an in-progress function call, and contains

» Return address (address of instruction where control should return
when function returns)

» Local variables

» Temporary data

» The Yxrsp register is the stack pointer

» Contains address of “top” of stack
» Stack grows down (from high to low addresses), so %rsp decreases as
stack grows

Clicker quiz!

Clicker quiz omitted from public slides

Assembly language!

» Assembly code = sequence of instructions
» Executed sequentially

Assembly language!

» Assembly code = sequence of instructions
» Executed sequentially (kind of, see Chapter 5)

Assembly language!

» Assembly code = sequence of instructions
» Executed sequentially (kind of, see Chapter 5)
» Each instruction has a mnemonic (mov, push, add, etc.)

Assembly language!

» Assembly code = sequence of instructions
» Executed sequentially (kind of, see Chapter 5)
» Each instruction has a mnemonic (mov, push, add, etc.)

» Most instructions will have one or two operands that specify data values
(input and/or output)

Assembly language!

» Assembly code = sequence of instructions
» Executed sequentially (kind of, see Chapter 5)
» Each instruction has a mnemonic (mov, push, add, etc.)

» Most instructions will have one or two operands that specify data values
(input and/or output)

» On Linux, the standard tools use "AT&T" assembly syntax
» Source is first operand, destination is second

Assembly code structure, labels

» Assembly code generally specifies both code and data
» Much like code written in a high level language
» A label marks the location of a chunk of code and/or data
» Syntax:
name0fLabel:
labeled code or data

» When the assembly code eventually runs, its code and data are loaded
into memory

» So, labels are synonymous with memory addresses

» In general, you can use labels as memory addresses in your assembly code

Operand size suffixes

» You will notice that instruction mnemonics sometimes use suffixes to
indicate the operand size:

Suffix Bytes Bits Note

b 1 8 "Byte”
W 2 16 “Word”
1 4 32 “Long" word
q 8 64 “Quad” word

(Use of w to mean 16 bits shows 16-bit origins of x86)
» E.g., movqg means move a 64 bit value

» You can often omit the operand size suffix, but it's helpful for readability,
and can even catch bugs

Assembly operands

Assume count and arr are labels indicating the addresses of global variables,
R is a register, N is an immediate, Sis 1, 2, 4, or 8

Type Syntax Example Note

Memory ref Addr count Content of memory location specified
by absolute memory address

Immediate $N $8, $arr $arr is address of arr

Register R %rax

Memory ref (R) (hrax) Address = Y%rax

Memory ref N(R) 8 (%rax) Address = %rax+38

Memory ref (R,R) (Y%rax,%rsi) Address = %rax+Y%rsi

Memory ref N(R R) 8(%rax,%rsi) Address = Yrax+Y%rsi+8

Memory ref (.R.S) (,%rsi,4d) Address = %rsix4

Memory ref (R .R.S) (Y%rax,%rsi,4) Address = %rax+(%rsix4)

Memory ref ~ N(,R,S) 8(,%rsi,4) Address = (%rsix4)+8

Memory ref N(RRS) 8(%rax,%rsi,4) Address = %rax+(%rsix4)+8

Data movement

90% of assembly code is data movement (made-up statistic)

» mov: copy source operand to destination operand

» Register
» Memory location (only one operand can be memory location)

» Immediate value (source operand only)

» Stack manipulation: push and pop instructions

» Generally used for saving and restoring register values
» push: decrement %rsp by operand size, copy operand to (%rsp)
» pop: copy (%rsp) to operand, increment %rsp by operand size

Data movement examples

Instruction

Note

movq $42, Yrax
movq %rax, jrdi
movl %eax, 4(%rdx)
pushqg %rbp

popq %rbp

Store the constant value 42 in %rax

Copy 8 byte value from %rax to %rdi

Copy 4 byte value from %eax to memory at address %rdx+4
Decrement %rsp by 8,

store contents of %rbp in memory location %rsp

Load contents of memory location %rsp into %rbp,

increment %rsp by 8

Clicker quiz!

Clicker quiz omitted from public slides

Assigning 32 bit value to 64 bit register

» Each 64 bit register has an alias for the lower 32 bits

» ‘rax, jeax

> Yrdi, %edi

» %r10, %r10d

» etc.
» Storing a value in the low 32 bits clears the upper 32 bits
» Eg.:

movq $OxfEfffFfEffFfEffFfff, Yrax /* Yrax initially contains ffffffffffffffff */
movl $1, %eax /* ‘rax now contains 1 */

Zero-extension, sign-extension

» When moving a smaller source value to a larger destination,
sign-extension (copying sign bit to high bits of result) is necessary to
preserve the value of a signed value

» E.g., representation of -16381 as 16 bit and 32 bit values:

Bits Representation
16 1100000000000011
32 11111111111111111100000000000011

» Data movement with sign-extension: movsbw, movsbl, movswl, etc.
» E.g., movswl %ax, %edi

» For unsigned values, data movement with zero-extension (copying 0 into
high bits of result): movzbw, movzbl, movzwl, etc.

Example C program

#include <stdio.h>

void addLongs(long x, long y, long *p) {
*p=x+y;

¥

int main(void) {
long a, b, result;
scanf ("%1d", &a);
scanf ("%14", &b);
addLongs(a, b, &result);
printf ("Result is %1d\n", result);
return O;

Example assembly program

.section .rodata .globl main
main:
longIntFmt: pushq %rbp
.string "%1d" movq %rsp, hrbp
resultFmt: subq $32, Yrsp

.string "Result is %1d\n"
movq $longIntFmt, %rdi
.section .text leaq -8(%rbp), J%rsi
call scanf
.globl addLongs

addLongs: movq $longIntFmt, %rdi
addq %rdi, ’%rsi leaq -16(%rbp), %rsi
movq %rsi, (%rdx) call scanf
ret

movq -8(%rbp), %rdi

movq -16(%rbp), %rsi
leaq -24(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq -24(%rbp), %rsi
call printf

addq $32, Yrsp

popq %rbp
ret

Example assembly program

.section .rodata

longIntFmt:
.string "%1d"
resultFmt:
.string "Result is %1d\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, Y%rsi

movq %rsi, (%rdx)

ret

.globl main

main:

pushq %rbp

movq
subq

movq
leaq
call

movq
leaq
call

movq
movq
leaq
call

movq
movq
call

addq

popq
ret

%rsp, %rbp
$32, Yrsp

$longIntFmt, %rdi
-8(%rbp), %rsi
scanf

$longIntFmt, %rdi
-16 (%rbp), %rsi
scanf

-8(%rbp), %rdi

-16 (%rbp), %rsi
-24(%rbp), %rdx
addLongs

$resultFmt, %rdi
-24(xrbp), hrsi
printf

$32, %rsp
%rbp

Things to note:

Example assembly program

.section .rodata

longIntFmt:
.string "%1d"
resultFmt:
.string "Result is %1d\n"

.section .text

.globl addLongs
addLongs:

addq %rdi, Y%rsi

movq %rsi, (%rdx)

ret

.globl main Things to note:
main: . .
pushq %rbp » The first three function
movq %rsp, #rbp parameters are passed in
subq $32, Urs . .
4 P %rdi, %rsi, and Yrdx
movq $longIntFmt, %rdi
leaq -8(%rbp), %rsi
call scanf
movq $longIntFmt, %rdi
leaq -16(%rbp), %rsi
call scanf
movq -8(%rbp), %rdi
movq -16(%rbp), %rsi
leaq -24(%rbp), %rdx
call addLongs
movq $resultFmt, %rdi
movq -24(%rbp), %rsi
call printf
addq $32, %rsp
popq %rbp

ret

Example assembly program

.section .rodata .globl main 1'hings to note:
main: . .
longIntFmt: pushq Y%rbp » The first three function
-string "%1d" movq %rsp, %rbp parameters are passed in
resultFmt: subq $32, Yrsp o . o . o
.string "Result is %1d\n" frdi, Jirsi, and Jrdx
movq $longIntFmt, %rdi » (%rdx) means the memory
.section .text leaq -8(%rbp), %rsi K X .
call scanf location pointed-to by %rdx
-globl addLongs (like pointer dereference)
addLongs: movq $longIntFmt, %rdi
addq %rdi, %rsi leaq -16(%rbp), %rsi
movq %rsi, (%rdx) call scanf
ret

movq -8(%rbp), %rdi
movq -16(%rbp), %rsi
leaq -24(%rbp), %rdx
call addLongs

movq $resultFmt, %rdi
movq -24(%rbp), %rsi
call printf

addq $32, Yrsp

popq %rbp
ret

Example assembly program

.section .rodata .globl main 1'hings to note:
main: . .
longIntFmt: pushq %rbp » The first three function
-string "%1d" movq %rsp, %rbp parameters are passed in
resultFmt: subq $32, Yrsp o . o . o
.string "Result is %1d\n" frdi, Jirsi, and Jrdx
movq $longIntFmt, %rdi > (%rdx) means the memory
.section .text leaq -8(%rbp), %rsi K X .
call scanf location pointed-to by %rdx
-globl addLongs (like pointer dereference)
addLongs: movq $longIntFmt, %rdi
addq %rdi, %rsi leaq -16(%rbp), %rsi | 2 —8(%rbp) means the
movq %rsi, (%rdx) call scanf

memory location at address
movq -8(%rbp), %rdi %rbp—S

movq -16(%rbp), %rsi

leaq -24(%rbp), %rdx

call addLongs

ret

movq $resultFmt, %rdi
movq -24(%rbp), %rsi
call printf

addq $32, Yrsp

popq %rbp
ret

Example assembly program

.section .rodata .globl main Thlngs to note:
main: . .
longIntFmt: pushq Y%rbp » The first three function
-string "%1d" movq %rsp, %rbp parameters are passed in
resultFmt: subq $32, Yrsp o . o . o
.string "Result is %1d\n" frdi, Jirsi, and Jrdx
movq $longIntFmt, %rdi » (%rdx) means the memory
.section .text leaq -8(%rbp), %rsi K X .
call scanf location pointed-to by %rdx
-globl addLongs (like pointer dereference)
addLongs: movq $longIntFmt, %rdi
addq %rdi, %rsi leaq -16(%rbp), %rsi | 2 —8(%rbp) means the
movq %rsi, (frdx) call scanf memory location at address
ret
movq -8(%rbp), %rdi %rbp—S
movq -16(%rbp), %rsi o N
leaq -24(Y%rbp), %rdx > leaq —8(A,I‘bp) , hrdx
call addLongs means compute the address

) H H 0
novq $resultFmt, %rdi %rbp-8 and store it in Jrdx

movq -24(%rbp), %rsi (||ke address—of)
call printf

addq $32, Yrsp

popq %rbp
ret

Example assembly program (continued)

.section .rodata .globl main Thlngs to note:
main:
longIntFmt: pushq %rbp > 40 bytes are allocated
-string "%1d" movq %rsp, %rbp within main's stack frame,
resultFmt: subq $32, Yrsp . .
string "Result is %ld\n" including 24 bytes for local
movq $longIntFmt, %rdi variables:
.section .text leaq -8(%rbp), J%rsi

[higher addresses]

call scanf saved %rip

.globl addLongs

addLongs: movq $longIntFmt, %rdi saved %rbp
addq %rdi, %rsi leaq -16(%rbp), %rsi %rbp —»
movq %rsi, (%rdx) call scanf first operand -8(%rbp)
ret second operand
movq -8(%rbp), %rdi -16(%rbp)
movq -16(%rbp), %rsi result 24(%rbp)
leaq -24(%rbp), %rdx
call addLongs unused
%rsp —»
movq $resultFmt, J%rdi [lower addresses]

movq -24(%rbp), %rsi

call printf %rbp is used to access the

addq $32, Yrsp local variables

popq %rbp
ret

	Compiling and executing a C program
	x86-64 assembly programming

