
Lecture 7: ALU operations, arithmetic

David Hovemeyer

February 4, 2026

601.229 Computer Systems Fundamentals

Writing x86-64 assembly code

Getting started with x86-64 assembly

▶ Today we’re beginning our detailed look at programming in x86-64
assembly language

▶ One challenge in learning assembly program is knowing how to get started
▶ What does a minimal program look like?
▶ How to define variables, do I/O, etc.

▶ Today’s sample programs will be posted on the course web page
(alu.zip)
▶ Feel free to use them as a reference, modify them, etc.

A few essentials

▶ Use .S file extension for assembly code
▶ Will be run through the C preprocessor, can use C style comments and

#define to define named constants
▶ Use gcc to assemble .S file into object code (.o file)
▶ Use gcc to link object files (.o) into executable
▶ Overall, process is similar to developing a C program

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"

.section .text

.globl main
main:

subq $8, %rsp
movl $0, %eax
movq $sHelloMsg, %rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata <-- read-only data section

sHelloMsg: .string "Hello, world\n"

.section .text

.globl main
main:

subq $8, %rsp
movl $0, %eax
movq $sHelloMsg, %rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n" <-- NUL terminated string constant

.section .text

.globl main
main:

subq $8, %rsp
movl $0, %eax
movq $sHelloMsg, %rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"

.section .text <-- code goes in .text section

.globl main
main:

subq $8, %rsp
movl $0, %eax
movq $sHelloMsg, %rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"

.section .text

.globl main <-- make `main' visible to other modules
main:

subq $8, %rsp
movl $0, %eax
movq $sHelloMsg, %rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"

.section .text

.globl main
main:

subq $8, %rsp <-- align stack pointer
movl $0, %eax
movq $sHelloMsg, %rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"

.section .text

.globl main
main:

subq $8, %rsp
movl $0, %eax <-- no vector arguments to printf
movq $sHelloMsg, %rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"

.section .text

.globl main
main:

subq $8, %rsp
movl $0, %eax
movq $sHelloMsg, %rdi <-- first arg is ptr to message string
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"

.section .text

.globl main
main:

subq $8, %rsp
movl $0, %eax
movq $sHelloMsg, %rdi
call printf <-- call printf!

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"

.section .text

.globl main
main:

subq $8, %rsp
movl $0, %eax
movq $sHelloMsg, %rdi
call printf

addq $8, %rsp <-- restore stack pointer
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"

.section .text

.globl main
main:

subq $8, %rsp
movl $0, %eax
movq $sHelloMsg, %rdi
call printf

addq $8, %rsp
ret <-- return from main, ends program

Assembling, linking, executing

$ gcc -c -no-pie -o hello.o hello.S
$ gcc -no-pie -o hello hello.o
$./hello
Hello, world

Note that the -no-pie option disables support for position-independent code
(which would require additional magic in the assembly source code)

ALU operations

ALU operations

▶ ALU = “Arithmetic Logic Unit”
▶ An ALU is a hardware component within the CPU that does

computations (of various kinds) on data values
▶ Addition/subtraction
▶ Logical operations (shifts, bitwise and/or/negation), etc.

▶ So, ALU instructions are the ones that do computations on values
▶ Typically, ALU operates only on integer values
▶ CPU will typically have floating-point unit(s) for operations on FP

values

lea instruction

▶ lea stands for “Load Effective Address”
▶ Instructions that allow a memory reference as an operand generally do an

address computation
▶ E.g., movl 12(%rdx,%rsi,4), %eax
▶ Computed address (for source memory location) is

%rdx+(%rsi×4)+12
▶ The lea instruction computes a memory address, but does not access a

memory location
▶ E.g., leaq 12(%rdx,%rsi,4), %rdi
▶ Keep in mind we’re not obligated to use the computed address as an

address — we can just use it as an integer
▶ In general, lea can do integer computations of the form p + (qS) + r

where S is 0, 1, 2, 4, or 8
▶ lea does not set condition codes (e.g., on overflow)

leaq example code

/* leaq_example.S */
.section .rodata
sFmt: .string "Result is: %lu\n"

.section .text
.globl main

main:
subq $8, %rsp
movl $0, %eax
movq $sFmt, %rdi
movq $1000, %r10
movq $3, %r11
leaq 15(%r10,%r11,8), %rsi
call printf
addq $8, %rsp
ret

leaq example code

/* leaq_example.S */
.section .rodata
sFmt: .string "Result is: %lu\n"

.section .text
.globl main

main:
subq $8, %rsp
movl $0, %eax
movq $sFmt, %rdi
movq $1000, %r10
movq $3, %r11
leaq 15(%r10,%r11,8), %rsi %rsi <- 1000 + 3*8 + 15
call printf
addq $8, %rsp
ret

Result of leaq example program

$ gcc -c -no-pie -o leaq_example.o leaq_example.S
$ gcc -no-pie -o leaq_example leaq_example.o
$./leaq_example
Result is: 1039

Clicker quiz!

Clicker quiz omitted from public slides

Addition, subtraction

▶ add and sub instructions add and subtract integer values
▶ Two operands, second operand modified to store the result
▶ Note that either operand (but not both) could be a memory reference

▶ E.g.,
movq $1, %r9
movq $2, %r10
addq %r9, %r10
/* %r10 now contains the value 3 */

▶ Overflow is possible!
▶ Can detect using condition codes

Addition/subtraction example program

/* addsub.S */
.section .rodata
sPrompt: .string "Enter an integer value: "
sInputFmt: .string "%u"
sFmt: .string "Result is %u\n"

.section .data
val: .space 4

.section .text
.globl main

main:
subq $8, %rsp

movl $0, %eax
movq $sPrompt, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
movq $val, %rsi
call scanf

addl $10, val
subl $2, val

movl $0, %eax
movq $sFmt, %rdi
movl val, %esi
call printf

addq $8, %rsp

ret

Addition/subtraction example program

/* addsub.S */
.section .rodata
sPrompt: .string "Enter an integer value: "
sInputFmt: .string "%u"
sFmt: .string "Result is %u\n"

.section .data
val: .space 4 <- global variable

.section .text
.globl main

main:
subq $8, %rsp

movl $0, %eax
movq $sPrompt, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
movq $val, %rsi
call scanf

addl $10, val
subl $2, val

movl $0, %eax
movq $sFmt, %rdi
movl val, %esi
call printf

addq $8, %rsp

ret

Addition/subtraction example program

/* addsub.S */
.section .rodata
sPrompt: .string "Enter an integer value: "
sInputFmt: .string "%u"
sFmt: .string "Result is %u\n"

.section .data
val: .space 4

.section .text
.globl main

main:
subq $8, %rsp

movl $0, %eax
movq $sPrompt, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
movq $val, %rsi <- pass address of val to scanf
call scanf

addl $10, val
subl $2, val

movl $0, %eax
movq $sFmt, %rdi
movl val, %esi
call printf

addq $8, %rsp

ret

Addition/subtraction example program

/* addsub.S */
.section .rodata
sPrompt: .string "Enter an integer value: "
sInputFmt: .string "%u"
sFmt: .string "Result is %u\n"

.section .data
val: .space 4

.section .text
.globl main

main:
subq $8, %rsp

movl $0, %eax
movq $sPrompt, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
movq $val, %rsi
call scanf

addl $10, val <- add 10 to val
subl $2, val

movl $0, %eax
movq $sFmt, %rdi
movl val, %esi
call printf

addq $8, %rsp

ret

Addition/subtraction example program

/* addsub.S */
.section .rodata
sPrompt: .string "Enter an integer value: "
sInputFmt: .string "%u"
sFmt: .string "Result is %u\n"

.section .data
val: .space 4

.section .text
.globl main

main:
subq $8, %rsp

movl $0, %eax
movq $sPrompt, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
movq $val, %rsi
call scanf

addl $10, val
subl $2, val <- subtract 2 from val

movl $0, %eax
movq $sFmt, %rdi
movl val, %esi
call printf

addq $8, %rsp

ret

Addition/subtraction example program

/* addsub.S */
.section .rodata
sPrompt: .string "Enter an integer value: "
sInputFmt: .string "%u"
sFmt: .string "Result is %u\n"

.section .data
val: .space 4

.section .text
.globl main

main:
subq $8, %rsp

movl $0, %eax
movq $sPrompt, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
movq $val, %rsi
call scanf

addl $10, val
subl $2, val

movl $0, %eax
movq $sFmt, %rdi
movl val, %esi
call printf <- print value in val

addq $8, %rsp

ret

Addition/subtraction example program

$ gcc -c -no-pie -o addsub.o addsub.S
$ gcc -no-pie -o addsub addsub.o
$./addsub
Enter an integer value: 11
Result is 19

Increment, decrement

▶ inc and dec instructions increment or decrement by 1
▶ One operand, can be either register or memory
▶ Examples:

incq %rax /* increment %rax */
incl 4(%rbp) /* increment 32 bit value at addr %rbp+4 */
decq %rdi /* decrement %rdi */

▶ Overflow is possible, check condition codes

Shifts

▶ Left shift: shl
▶ Right shift: sar (arithmetic), shr (logical)
▶ sar shifts in the value of the sign bit, shr shifts in zeroes

▶ Examples (see shift_example.S in alu.zip):
movl $0xFFFF0000, %esi
shll $1, %esi /* %esi set to 0xFFFE0000 */
movl $0xFFFF0000, %esi
sarl $1, %esi /* %esi set to 0xFFFF8000 */
movl $0xFFFF0000, %esi
shrl $1, %esi /* %esi set to 0x7FFF8000 */

▶ Shifts commonly used to multiply or divide by power of two
▶ Left shift one position → multiply by 2
▶ Right shift one position → divide by 2 (and discard remainder)

Clicker quiz!

Clicker quiz omitted from public slides

Bitwise logical operations

▶ Two-operand logical operations: and, or, xor
▶ Unary logical operation: not
▶ Examples (see logic_example.S in alu.zip):

/* Note: 0x30 = 00110000b,
0x50 = 01010000b */

movb $0x30, %al; movb $0x50, %bl
andb %bl, %al /* set %al=0x10 (00010000b) */
movb $0x30, %al; movb $0x50, %bl
orb %bl, %al /* set %al=0x70 (01110000b) */
movb $0x30, %al; movb $0x50, %bl
xorb %bl, %al /* set %al=0x60 (01100000b) */
movb $0x30, %al
notb %al /* set %al=0xCF (11001111b) */

Multiplication

▶ Two forms of imul instruction
▶ Two operand: multiply operands and truncate
▶ Example:

imulq %rdi, %rsi /* set %rsi to %rdi * %rsi,
truncated to 64 bits */

▶ One operand: multiply 64 bit operand and value in %rax, 128-bit result in
%rdx:%rax
▶ Signed (imulq) and unsigned (mulq) variants
▶ Example:

mulq %rdi /* set %rdx:%rax to unsigned product
%rax * %rdi */

Division

▶ idivq and divq: signed and unsigned integer division
▶ 128-bit dividend in %rdx:%rax, 64 bit quotient in %rax, 64 bit remainder

in %rdx
▶ For a 64 bit dividend, set %rdx to 0 (unsigned division) or the

replication of the sign bit of %rax (ctqo instruction replicates the sign
bit of %rax)

▶ Example:
divq %r10 /* divide %rdx:%rax by %r10,

put quotient in %rax,
remainder in %rdx */

Putting it all together

Computing a weighted average

▶ Let’s say you want to know your grade in the course
▶ Weighting is 55% assignments, 20% midterm exam, 20% final exam, 5%

clicker quiz participation
▶ Example run:

Enter weight (0 when done): 55
Enter value: 84
Enter weight (0 when done): 20
Enter value: 89
Enter weight (0 when done): 20
Enter value: 93
Enter weight (0 when done): 5
Enter value: 100
Enter weight (0 when done): 0
Weighted average is 87

Program outline (full code in weighted_avg.S in alu.zip)
.section .rodata

read-only strings

.section .bss
zero-initialized global variables

.section .text
.globl main

main:
subq $8, %rsp

.LinputLoop:
read weight
if weight is 0, we're done
read value
multiply value by weight, add to sum
add weight to sum of weights
jmp .LinputLoop

.LdoneWithInput:
divide sum by sum of weights
print result

addq $8, %rsp
ret

Read-only strings, global variables

.section .rodata

sWeightPrompt: .string "Enter weight (0 when done): "
sValuePrompt: .string "Enter value: "
sInputFmt: .string "%ld"
sResultMsg: .string "Weighted average is %ld\n"

.section .bss

valueIn: .space 8
weightIn: .space 8
sum: .space 8
weightSum: .space 8

Loop body: read weight and value (end loop if weight=0)

/* read weight */
movl $0, %eax
movq $sWeightPrompt, %rdi
call printf
movl $0, %eax
movq $sInputFmt, %rdi
movq $weightIn, %rsi
call scanf

/* if weight is 0, we're done */
cmpq $0, weightIn
jz .LdoneWithInput

/* read value */
movl $0, %eax
movq $sValuePrompt, %rdi
call printf
movl $0, %eax
movq $sInputFmt, %rdi
movq $valueIn, %rsi
call scanf

Loop body: update sum and weightSum variables

/* multiply value by weight, add to sum */
movq weightIn, %r10
movq valueIn, %r11
imulq %r10, %r11
addq %r11, sum

/* add weight to sum of weights */
movq weightIn, %r10
addq %r10, weightSum

After loop finished, compute weighted average and print

/* divide sum by sum of weights */
movq $0, %rdx
movq sum, %rax
divq weightSum /* quotient will be stored in %rax */

/* print result */
movq %rax, %rsi
movl $0, %eax
movq $sResultMsg, %rdi
call printf

	Writing x86-64 assembly code
	ALU operations
	Putting it all together

