Lecture 7: ALU operations, arithmetic

David Hovemeyer

February 4, 2026

601.229 Computer Systems Fundamentals

=N

S il:,’

Writing x86-64 assembly code

Getting started with x86-64 assembly

» Today we're beginning our detailed look at programming in x86-64
assembly language

» One challenge in learning assembly program is knowing how to get started
» What does a minimal program look like?
» How to define variables, do 1/0, etc.

» Today's sample programs will be posted on the course web page
(alu.zip)
» Feel free to use them as a reference, modify them, etc.

A few essentials

» Use .S file extension for assembly code

» Will be run through the C preprocessor, can use C style comments and
#define to define named constants

» Use gcc to assemble .S file into object code (.o file)
» Use gcc to link object files (.0) into executable

» Overall, process is similar to developing a C program

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"
.section .text

.globl main
main:
subq $8, Yrsp
movl $0, %eax
movq $sHelloMsg, ’rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S x/

.section .rodata <-- read-only data section
sHelloMsg: .string "Hello, world\n"
.section .text

.globl main
main:
subq $8, Yrsp
movl $0, %eax
movq $sHelloMsg, ’rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S x/
.section .rodata

sHelloMsg: .string "Hello, world\n" <-- NUL terminated string constant
.section .text

.globl main
main:
subq $8, Yrsp
movl $0, %eax
movq $sHelloMsg, ’rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */
.section .rodata
sHelloMsg: .string "Hello, world\n"

.section .text <-- code goes in .text section

.globl main
main:
subq $8, Yrsp
movl $0, %eax
movq $sHelloMsg, ’rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */
.section .rodata
sHelloMsg: .string "Hello, world\n"

.section .text

.globl main <-- make "main' visible to other modules
main:

subq $8, Yrsp

movl $0, %eax

movq $sHelloMsg, ’rdi

call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"
.section .text

.globl main
main:
subq $8, Y%rsp <-- align stack pointer
movl $0, %eax
movq $sHelloMsg, ’rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"
.section .text

.globl main
main:
subq $8, Yrsp
movl $0, %eax <-- no vector arguments to printf

movq $sHelloMsg, ’rdi
call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"
.section .text

.globl main
main:
subq $8, Yrsp
movl $0, %eax
movq $sHelloMsg, ’rdi <-- first arg is ptr to message string

call printf

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"
.section .text

.globl main
main:
subq $8, Yrsp
movl $0, %eax
movq $sHelloMsg, ’rdi
call printf <-- call printf!

addq $8, %rsp
ret

Hello, world

/* hello.S */

.section .rodata

sHelloMsg: .string "Hello, world\n"
.section .text

.globl main
main:
subq $8, Yrsp
movl $0, %eax
movq $sHelloMsg, ’rdi
call printf

addq $8, %rsp <-- restore stack pointer
ret

Hello, world

/* hello.S */
.section .rodata

sHelloMsg: .string "Hello, world\n"
.section .text

.globl main
main:
subq $8, Yrsp
movl $0, Yeax
movq $sHelloMsg, Yrdi
call printf

addq $8, %rsp
ret <-- return from main, ends program

Assembling, linking, executing

$ gcc -c -no-pie -o hello.o hello.S
$ gcc -no-pie -o hello hello.o

$./hello

Hello, world

Note that the -no-pie option disables support for position-independent code
(which would require additional magic in the assembly source code)

ALU operations

ALU operations

» ALU = “Arithmetic Logic Unit”

» An ALU is a hardware component within the CPU that does
computations (of various kinds) on data values
» Addition/subtraction
» Logical operations (shifts, bitwise and/or/negation), etc.

» So, ALU instructions are the ones that do computations on values
» Typically, ALU operates only on integer values
» CPU will typically have floating-point unit(s) for operations on FP

values

lea instruction

» lea stands for “Load Effective Address”
» Instructions that allow a memory reference as an operand generally do an
address computation
» E.g., movl 12(%rdx,%rsi,4), ‘heax
» Computed address (for source memory location) is
hrdx+(hrsix4)+12
» The lea instruction computes a memory address, but does not access a
memory location
» Eg., leaq 12(%rdx,%rsi,4), %rdi
» Keep in mind we're not obligated to use the computed address as an
address — we can just use it as an integer
» In general, lea can do integer computations of the form p + (gS) + r
where S'is 0, 1, 2, 4, or 8

» lea does not set condition codes (e.g., on overflow)

leaq example code

/* leaq_example.S */
.section .rodata
sFmt: .string "Result is: %lu\n"

.section .text
.globl main
main:
subq $8, Y%rsp
movl $0, %eax
movq $sFmt, %rdi
movqg $1000, %ri10
movq $3, %ril
leaq 15(%r10,%r11,8), Y%rsi
call printf
addq $8, Y%rsp
ret

leaq example code

/* leaq_example.S */
.section .rodata
sFmt: .string "Result is: %lu\n"

.section .text
.globl main
main:
subq $8, Y%rsp
movl $0, %eax
movq $sFmt, %rdi
movqg $1000, %ri10
movq $3, %ril
leaq 15(%r10,%r11,8), %rsi %rsi <= 1000 + 3%8 + 15
call printf
addq $8, Y%rsp
ret

Result of leaq example program

$ gcc -c -no-pie -o leaq_example.o leaq_example.S
$ gcc -no-pie -o leaq_example leaq_example.o

$./leaq_example

Result is: 1039

Clicker quiz!

Clicker quiz omitted from public slides

Addition, subtraction

» add and sub instructions add and subtract integer values
» Two operands, second operand modified to store the result
» Note that either operand (but not both) could be a memory reference
» Eg.,
movqg $1, %r9
movq $2, %ri10

addq %r9, %ri10
/* %r10 now contains the value 3 */

» Overflow is possible!
» Can detect using condition codes

Addition /subtraction example program

/* addsub.S */ movl $0, Yeax
.section .rodata movq $sInputFmt, %rdi
sPrompt: .string "Enter an integer value: " movq $val, Yrsi

sInputFmt: .string "Ju" call scanf
sFmt: .string "Result is %u\n"

addl $10, val
.section .data subl $2, val
val: .space 4

movl $0, %eax

.section .text movq $sFmt, %rdi
.globl main movl val, %esi
main: call printf

subq $8, ’%rsp
addq $8, Yrsp
movl $0, Yeax
movq $sPrompt, %rdi ret
call printf

Addition /subtraction example program

/* addsub.S */ movl $0, Yeax
.section .rodata movq $sInputFmt, %rdi
sPrompt: .string "Enter an integer value: " movq $val, Yrsi

sInputFmt: .string "Ju" call scanf
sFmt: .string "Result is %u\n"
addl $10, val

.section .data subl $2, val
val: .space 4 <- global variable
movl $0, %eax
.section .text movq $sFmt, %rdi
.globl main movl val, %esi
main: call printf

subq $8, ’%rsp
addq $8, Yrsp
movl $0, Yeax
movq $sPrompt, %rdi ret
call printf

Addition /subtraction example program

/* addsub.S */ movl $0, Yeax
.section .rodata movq $sInputFmt, %rdi
sPrompt: .string "Enter an integer value: " movq $val, Yrsi <- pass address of val to scanf

sInputFmt: .string "Ju" call scanf
sFmt: .string "Result is %u\n"

addl $10, val
.section .data subl $2, val
val: .space 4

movl $0, %eax

.section .text movq $sFmt, %rdi
.globl main movl val, %esi
main: call printf

subq $8, ’%rsp
addq $8, Yrsp
movl $0, Yeax
movq $sPrompt, %rdi ret
call printf

Addition /subtraction example program

/* addsub.S */ movl $0, %eax
.section .rodata movq $sInputFmt, %rdi
sPrompt: .string "Enter an integer value: " movq $val, Yrsi
sInputFmt: .string "Ju" call scanf
sFmt: .string "Result is %u\n"
addl $10, val <- add 10 to val
.section .data subl $2, val

val: .space 4
movl $0, %eax

.section .text movq $sFmt, %rdi
.globl main movl val, %esi
main: call printf

subq $8, ’%rsp
addq $8, Yrsp
movl $0, Yeax
movq $sPrompt, %rdi ret
call printf

Addition /subtraction example program

/* addsub.S */
.section .rodata

sPrompt: .string "Enter an integer value:

sInputFmt: .string "%u"
sFmt: .string "Result is %u\n"

.section .data
val: .space 4

.section .text

.globl main
main:

subq $8, ’%rsp

movl $0, Yeax
movq $sPrompt, %rdi
call printf

movl

$0, %eax

movq $sInputFmt, %rdi

movq
call

addl
subl

movl
movq
movl
call
addq

ret

$val, Yrsi
scanf

$10, val
$2, val

$0, %eax
$sFmt, Y%rdi
val, Y%esi
printf

$8, ‘rsp

<- subtract 2 from val

Addition /subtraction example program

/* addsub.S */
.section .rodata

sPrompt: .string "Enter an integer value:

sInputFmt: .string "%u"
sFmt: .string "Result is %u\n"

.section .data
val: .space 4

.section .text

.globl main
main:

subq $8, ’%rsp

movl $0, Yeax
movq $sPrompt, %rdi
call printf

movl

$0, %eax

movq $sInputFmt, %rdi

movq
call

addl
subl

movl
movq
movl
call
addq

ret

$val, Yrsi
scanf

$10, val
$2, val

$0, %eax
$sFmt, Y%rdi
val, Y%esi
printf

$8, ‘rsp

<- print value in val

Addition /subtraction example program

$ gcc -c -no-pie -o addsub.o addsub.S
$ gcc -no-pie -o addsub addsub.o

$./addsub

Enter an integer value: 11

Result is 19

Increment, decrement

» inc and dec instructions increment or decrement by 1

» One operand, can be either register or memory

» Examples:
incq Y%rax /* increment Y%rax */
incl 4(%rbp) /* increment 32 bit value at addr Jrbp+4 */
decq %rdi /* decrement Y%rdi */

» Overflow is possible, check condition codes

» Left shift: shl
» Right shift: sar (arithmetic), shr (logical)
» sar shifts in the value of the sign bit, shr shifts in zeroes

» Examples (see shift_example.S in alu.zip):

movl $0xFFFF0000, %esi

shll $1, Y%esi /* %esi set to OxFFFE0000 */
movl $0xFFFF0000, %esi
sarl $1, Y%esi /* %esi set to OxFFFF8000 */
movl $0xFFFF0000, %esi
shrl $1, Y%esi /* %esi set to Ox7FFF8000 */

» Shifts commonly used to multiply or divide by power of two
» Left shift one position — multiply by 2
» Right shift one position — divide by 2 (and discard remainder)

Clicker quiz!

Clicker quiz omitted from public slides

Bitwise logical operations

» Two-operand logical operations: and, or, xor
» Unary logical operation: not
» Examples (see logic_example.S in alu.zip):

/* Note: 0x30

00110000b,

0x50 = 01010000b */
movb $0x30, %al; movb $0x50, %bl
andb %bl, %al /* set %al=0x10 (00010000b) */
movb $0x30, %al; movb $0x50, %bl
orb %bl, %al /* set %al=0x70 (01110000b) =*/
movb $0x30, %al; movb $0x50, %bl
xorb %bl, %al /* set %al=0x60 (01100000b) =*/

movb $0x30, %al
notb %al /* set %al=0xCF (11001111b) */

Multiplication

» Two forms of imul instruction
» Two operand: multiply operands and truncate
» Example:
imulq Y%rdi, %rsi /* set %rsi to %rdi * Yrsi,
truncated to 64 bits */
» One operand: multiply 64 bit operand and value in %rax, 128-bit result in
hrdx:jrax

» Signed (imulq) and unsigned (mulq) variants
» Example:

mulq %rdi /* set Yrdx:Jrax to unsigned product
frax * Yrdi */

Division

» idivq and divq: signed and unsigned integer division

» 128-bit dividend in %rdx:%rax, 64 bit quotient in %rax, 64 bit remainder
in %rdx
» For a 64 bit dividend, set %rdx to O (unsigned division) or the

replication of the sign bit of %rax (ctqo instruction replicates the sign
bit of %rax)

» Example:
divq %rl0 /* divide Yrdx:’rax by %r10,

put quotient in Yrax,
remainder in Y%rdx */

Putting it all together

Computing a weighted average

» Let's say you want to know your grade in the course

» Weighting is 55% assignments, 20% midterm exam, 20% final exam, 5%
clicker quiz participation

» Example run:
Enter weight (O when done): 55
Enter value: 84
Enter weight (O when done): 20
Enter value: 89
Enter weight (O when done): 20
Enter value: 93
Enter weight (O when done): 5
Enter value: 100
Enter weight (O when done): O
Weighted average is 87

Program outline (full code in weighted_avg.S in alu.zip)

.section .rodata
read-only strings

.section .bss
zero-initialized global wvariables

.section .text

.globl main
main:

subq $8, %rsp

.LinputLoop:
read weight
if weight is 0, we're done
read value
multiply value by weight, add to sum
add weight to sum of weights
jmp .LinputLoop

.LdoneWithInput:
divide sum by sum of weights
print result

addq $8, Yrsp
ret

Read-only strings, global variables

.section .rodata

sWeightPrompt: .string "Enter weight (0 when done): "
sValuePrompt: .string "Enter value: "

sInputFmt: .string "%14"

sResultMsg: .string "Weighted average is ’%1ld\n"

.section .bss

valueln: .space 8
weightIn: .space 8
sum: .space 8
weightSum: .space 8

Loop body: read weight and value (end loop if weight=0)

/* read weight */

movl $0, %eax

movq $sWeightPrompt, %rdi
call printf

movl $0, %eax

movq $sInputFmt, %rdi
movq $weightIn, %rsi

call scanf

/* if weight is O, we're done */
cmpq $0, weightIn
jz .LdoneWithInput

/* read value */

movl $0, Y%eax

movq $sValuePrompt, %rdi
call printf

movl $0, Yeax

movq $sInputFmt, %rdi
movq $valueln, %rsi

call scanf

Loop body: update sum and weightSum variables

/* multiply value by weight, add to sum */
movq weightIn, %ri10

movq valueIn, %ril

imulq %r10, %ril

addq %rll, sum

/* add weight to sum of weights */
movq weightIn, %ri10
addq %r10, weightSum

After loop finished, compute weighted average and print

/* divide sum by sum of weights */

movq $0, Yrdx

movq sum, %rax

divg weightSum /* quotient will be stored in Yjrax */

/* print result */
movq %rax, hrsi

movl $0, %eax

movqg $sResultMsg, %rdi
call printf

	Writing x86-64 assembly code
	ALU operations
	Putting it all together

