
Lecture 8: Control flow

David Hovemeyer

February 6, 2026

601.229 Computer Systems Fundamentals

Control flow!

▶ Control flow:
▶ Decisions (if/then, switch)
▶ Loops (for, while)

▶ Today’s example programs are linked as control.zip on the course
website

Decisions

Unconditional jump

▶ Sometimes we want to jump unconditionally
▶ Continue a loop
▶ Complete a decision construct

▶ This is the jmp instruction
▶ Because unconditional, not directly useful for implementing decisions and

loops
▶ But, definitely useful and necessary

Condition codes

▶ Condition codes are status bits updated by most ALU instructions to
indicate the outcome of the instruction

▶ Most important condition code bits:
▶ CF: carry flag (unsigned operation overflowed)
▶ ZF: zero flag (result was 0)
▶ SF: sign flag (result was negative)
▶ OF: overflow flag (signed operation overflowed)

▶ Condition code bits can be used to make decisions
▶ If/else logic, loops

Comparing values

▶ cmp instruction: essentially the same as sub, except that it doesn’t
modify the “result” operand
▶ Useful for comparing integer values

▶ Annoying quirk: AT&T syntax puts the operands in the opposite of the
order you might expect
▶ E.g., cmpl %eax, %ebx computes %ebx - %eax and sets condition

codes appropriately

Testing bits

▶ test instruction: essentially the same as and, but doesn’t modify the
“result” operand

▶ Example:
testl $0x80, %eax

Sets ZF (zero flag) IFF bit 7 of %eax is 0

set instructions

▶ The setX instructions set a single byte to 0 or 1 depending on whether a
condition code bit is set
▶ Useful to get the result of a comparison as a data value

▶ Example:
setz %al

Set %al (low byte of %rax) to 1 IFF ZF (zero flag) is set

Conditional jump

Most often, we want to use the result of a comparison in order to influence a
conditional jump instruction (used for implementing if/else logic and
eventually-terminating loops)
Examples (^ means XOR, ~ means NOT, & means AND, | means OR):

Instruction Condition for jump Meaning
je, jz ZF jump if equal
jl SF ^ OF jump if less
jle (SF ^ OF) | ZF jump if less than or equal
jg ~(SF ^ OF) & ~ZF jump if greater
jge ~(SF ^ OF) jump if greater than or equal
ja ~CF & ~ZF jump if above (unsigned)
jae ~CF jump if above or equal (unsigned)
jb CF jump if below (unsigned)
jbe CF | ZF jump if below or equal (unsigned)

Implementing decisions (if, if/else)

Basic approach for implementing an if statement (C and assembly):

/* C code */
if (compare op1 and op2) {

conditionally-executed code
}
rest of code...

/* assembly code */
cmp op2, op1
jX .Lout
conditionally-executed code

.Lout:
rest of code...

Idea is that jX jumps to .Lout if the condition evaluates as false

Implementing decisions (if, if/else)

Basic approach for implementing an if/else statement (C and assembly):

/* C code */
if (compare op1 and op2) {

code if true
} else {

code if false
}
rest of code...

/* assembly code */
cmp op2, op1
jX .LelsePart
code if true
jmp .Lout

.LelsePart:
code if false

.Lout:
rest of code...

jX jumps to .LelsePart if the condition evaluates as false

Example: can you vote?

/* vote.S */
.section .rodata
sAgePrompt: .string "What is your age? "
sInputFmt: .string "%d"
sCanVoteMsg: .string "You can vote, yay!\n"
sCannotVoteMsg:
.string "You're not old enough to vote yet\n"

.section .bss
age: .space 4

.section .text
.globl main

main:
subq $8, %rsp

movl $0, %eax
movq $sAgePrompt, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
movq $age, %rsi
call scanf

cmpl $18, age
jl .LtooYoungToVote
movq $sCanVoteMsg, %rdi
jmp .LprintMsg

.LtooYoungToVote:
movq $sCannotVoteMsg, %rdi

.LprintMsg:
movl $0, %eax
call printf

addq $8, %rsp
ret

Running the program

$ gcc -c -no-pie -o vote.o vote.S
$ gcc -no-pie -o vote vote.o
$./vote
What is your age? 17
You're not old enough to vote yet
$./vote
What is your age? 18
You can vote, yay!

Clicker quiz!

Clicker quiz omitted from public slides

Implementing decisions (switch)

switch statement: multiway branch based on an integer value

Example:
int month;
scanf("%d", &month);
switch (month) {
case 1: case 3: case 5: case 7:
case 8: case 10: case 12:

printf("31 days\n"); break;
case 4: case 6: case 9: case 11:

printf("30 days\n"); break;
case 2:

printf("28 or 29 days\n); break;
default:

printf("not a valid month\n");
}

Switch implementation

One approach: translate into equivalent of if/else if/. . .

This might be the best approach if the range of tested integers is not dense

If the range of tested integers is dense, can use a jump table
▶ Jump table = array of code addresses
▶ Look up entry, jump to that location
▶ O(1) time!
▶ Full demo program months.S in control.zip

Jump tables

Assume that %esi contains an integer value input by the user
cmpl $1, %esi
jl .LDefaultCase
cmpl $12, %esi
jg .LDefaultCase
dec %esi
jmp *.LJumpTable(,%esi,8)

.L31DaysCase:
code to handle months 1, 3, 5, etc.
jmp .LSwitchDone

.L30DaysCase:
code to handle months 4, 6, 9, etc.
jmp .LSwitchDone

.LFebCase:
code to handle month 2
jmp .LSwitchDone

.LDefaultCase:
code to handle invalid month values

.LSwitchDone:

Jump tables

Assume that %esi contains an integer value input by the user
cmpl $1, %esi
jl .LDefaultCase
cmpl $12, %esi
jg .LDefaultCase
dec %esi
jmp *.LJumpTable(,%esi,8) <-- jump table lookup

.L31DaysCase:
code to handle months 1, 3, 5, etc.
jmp .LSwitchDone

.L30DaysCase:
code to handle months 4, 6, 9, etc.
jmp .LSwitchDone

.LFebCase:
code to handle month 2
jmp .LSwitchDone

.LDefaultCase:
code to handle invalid month values

.LSwitchDone:

Jump tables

The actual jump table is simply an array of pointers, where the element values
are code addresses specified using labels

.LJumpTable:
.quad .L31DaysCase
.quad .LFebCase
.quad .L31DaysCase
.quad .L30DaysCase
.quad .L31DaysCase
.quad .L30DaysCase
.quad .L31DaysCase
.quad .L31DaysCase
.quad .L30DaysCase
.quad .L31DaysCase
.quad .L30DaysCase
.quad .L31DaysCase

Loops

Implementing loops

One way to implement a loop (essentially a while):
.Ltop:

cmp value, reg
jX .Ldone

loop body
jmp .Ltop

.Ldone:

code following loop...

Assumes that:
▶ reg is a loop counter
▶ jX is a conditional jump which, when taken, terminates loop

Implementing loops

Slightly more clever approach (also for implementing while):
jmp .LcheckCond

.Ltop:
loop body

.LcheckCond:
cmp value, reg
jX .Ltop

code following loop...

Assumes that:
▶ reg is a loop counter
▶ jX is a conditional jump which, when taken, continues loop

This approach eliminates an unconditional jump from the loop body

Loop example program

Compute fib(n) where:

fib(0) = 0

fib(1) = 1

For n > 1, fib(n) = fib(n − 2) + fib(n − 1)

Loop example program

Note: this program will only work when N ≥ 1

/* fib.S */

#define N 9

.section .rodata
sResultMsg: .string "fib(%u) = %u\n"

.section .text
.globl main

main:
subq $8, %rsp

movl $1, %ecx /* %ecx is the loop counter */
movl $0, %r10d /* %r10d stores fib(n-1) */
movl $1, %r11d /* %r11d stores fib(n) */

jmp .LtestCond

.LloopTop:
movl %r11d, %r9d
addl %r10d, %r11d
movl %r9d, %r10d
inc %ecx

.LtestCond:
cmpl $N, %ecx
jl .LloopTop

movl $0, %eax
movq $sResultMsg, %rdi
movl $N, %esi
movl %r11d, %edx
call printf

addq $8, %rsp
ret

Loop example program

$ gcc -c -no-pie -o fib.o fib.S
$ gcc -no-pie -o fib fib.o
$./fib
fib(9) = 34

Clicker quiz!

Clicker quiz omitted from public slides

Practical assembly programming tips

Know where to put things

▶ The .section directive specifies which “section” of the executable
program assembled code or data will be placed in

▶ Put things in the right place!
▶ Code goes in .text
▶ Read-only data such as string constants go in .rodata
▶ Uninitialized (zero-filled) variables and buffers go in .bss
▶ Use the .space directive to indicate how large these are

▶ Initialized (non-zero-filled) variables and buffers go in .data
▶ There are various directives such as .byte, .2byte, .4byte, etc. to

specify initialized data values

Labels

▶ Labels are names representing addresses of code or data in memory
▶ For functions and global variables, use appropriate names
▶ Functions and data exported to other modules must be marked with

.globl
▶ For control-flow targets within a function, use local labels
▶ These are labels which start with .L (dot, followed by upper case L)
▶ The assembler will not add these to the module’s symbol table
▶ Using “normal” labels for control flow makes debugging difficult

because gdb thinks they are functions!

Using gdb

▶ You can debug assembly programs using gdb!
▶ “Debugging by adding print statements” is much less practical for

assembly programs than programs in a high level language
▶ Which isn’t to say it’s not possible or (occasionally) useful

▶ Being able to use gdb confidently will greatly enhance your ability to
develop working assembly language programs

gdb tips

▶ Set breakpoints (break main, break myProg.S:123)
▶ where: see current call stack
▶ If you compiled your code with debugging symbols (i.e., using -g flag to

gcc), next and step commands work as expected!
▶ If code is compiled without debug symbols, it’s more difficult:
▶ disassemble (or just disas): display assembly code of current

function
▶ stepi: step to next instruction
▶ nexti: step to next instruction (stepping over call instructions)

gdb tips (continued)

▶ Use $ prefix to refer to registers (e.g., $rax, $edi, etc.)
▶ Use print and casts to C data types when inspecting data:
▶ Print 64 bit value %rsp points to: print *(unsigned long *)$rsp
▶ Print character string %rdi points to: print (char *)$rdi
▶ Print fourth element of array of int elements that %r12 points to:

print ((int *)$r12)[3]
▶ Print contents of %rcx is hexadecimal: print/x $rcx

	Decisions
	Loops
	Practical assembly programming tips

