
Lecture 9: Procedures

David Hovemeyer

February 9, 2026

601.229 Computer Systems Fundamentals

Control flow (part 2)

▶ Procedures
▶ Stacks:
▶ Procedure calls and returns
▶ Storage for local variables and temporary values

▶ Today’s example programs are linked as control2.zip on the course
website

Procedures

Procedures, call stack

▶ Procedures (a.k.a. functions, subroutines), the most important abstraction
in programming
▶ Can you imagine trying to write programs without them?

▶ Call stack: hardware-supported, runtime data structure
▶ Stores return addresses so procedures know where to return to
▶ Used to allocate stack frames: per-procedure-call storage area for local

variables, temporary values, and (sometimes) argument values
▶ As name suggests, is a stack, LIFO discipline (push and pop)

Stack pointer, instruction pointer

▶ Stack pointer register %rsp: contains address of current “top” of stack
▶ Important: stack grows towards lower addresses, so top of stack is at

lower address than bottom of stack
▶ Instruction pointer register %rip: contains code address of next

instruction to be updated
▶ Control flow changes the value of %rip

▶ Other architectures use the name “program counter” rather than
“instruction pointer”, but they’re the same thing

push and pop

▶ push: push a data value onto the call stack
▶ E.g., pushq %rax
▶ Decrement %rsp by 8
▶ Store value in %rax at memory location pointed-to by %rsp

▶ pop: pop a data value from the call stack
▶ E.g., popq %rax
▶ Load value at memory location pointed-to by %rsp into %rax
▶ Increment %rsp by 8

▶ push and pop are amazingly useful for saving and restoring register values
▶ Various size operands (1, 2, 4, 8 bytes) can be pushed and popped; need

to consider alignment

push and pop

pushq %rax
pushq %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

push and pop

pushq %rax
pushq %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

push and pop

pushq %rax
pushq %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

push and pop

pushq %rax
pushq %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

push and pop

pushq %rax
pushq %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

push and pop

pushq %rax
pushq %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

push and pop

pushq %rax
pushq %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

call and ret

▶ call instruction: calls procedure
▶ %rip contains address of instruction following call instruction
▶ Push %rip onto stack (as though pushq %rip was executed): this is

the return address
▶ Change %rip to address of first instruction of called procedure
▶ Called procedure starts executing

▶ ret instruction: return from procedure
▶ Pop saved return address from stack into %rip (as though popq %rip

was executed)
▶ Execution continues at return address

Stack alignment

▶ Recall that storage for multibyte values should be allocated in memory
using natural alignment

▶ E.g., storage for an 8 byte value should be stored at an address which is
a mulitple of 8

▶ This is true of stack-allocated values!
▶ The Linux x86-64 calling conventions require %rsp to be a multiple of 16

at the point of a procedure call (to ensure that 16 byte values can be
accessed on the stack if necessary)

▶ Issue: on entry to a procedure, %rsp mod 16 = 8 because the call
instruction (which called the procedure) pushed %rip (the program
counter) onto the stack

Stack alignment

▶ Recall that storage for multibyte values should be allocated in memory
using natural alignment
▶ E.g., storage for an 8 byte value should be stored at an address which is

a mulitple of 8

▶ This is true of stack-allocated values!
▶ The Linux x86-64 calling conventions require %rsp to be a multiple of 16

at the point of a procedure call (to ensure that 16 byte values can be
accessed on the stack if necessary)

▶ Issue: on entry to a procedure, %rsp mod 16 = 8 because the call
instruction (which called the procedure) pushed %rip (the program
counter) onto the stack

Stack alignment

▶ Recall that storage for multibyte values should be allocated in memory
using natural alignment
▶ E.g., storage for an 8 byte value should be stored at an address which is

a mulitple of 8
▶ This is true of stack-allocated values!

▶ The Linux x86-64 calling conventions require %rsp to be a multiple of 16
at the point of a procedure call (to ensure that 16 byte values can be
accessed on the stack if necessary)

▶ Issue: on entry to a procedure, %rsp mod 16 = 8 because the call
instruction (which called the procedure) pushed %rip (the program
counter) onto the stack

Stack alignment

▶ Recall that storage for multibyte values should be allocated in memory
using natural alignment
▶ E.g., storage for an 8 byte value should be stored at an address which is

a mulitple of 8
▶ This is true of stack-allocated values!
▶ The Linux x86-64 calling conventions require %rsp to be a multiple of 16

at the point of a procedure call (to ensure that 16 byte values can be
accessed on the stack if necessary)

▶ Issue: on entry to a procedure, %rsp mod 16 = 8 because the call
instruction (which called the procedure) pushed %rip (the program
counter) onto the stack

Stack alignment

▶ Recall that storage for multibyte values should be allocated in memory
using natural alignment
▶ E.g., storage for an 8 byte value should be stored at an address which is

a mulitple of 8
▶ This is true of stack-allocated values!
▶ The Linux x86-64 calling conventions require %rsp to be a multiple of 16

at the point of a procedure call (to ensure that 16 byte values can be
accessed on the stack if necessary)

▶ Issue: on entry to a procedure, %rsp mod 16 = 8 because the call
instruction (which called the procedure) pushed %rip (the program
counter) onto the stack

Ensuring correct stack alignment

▶ To ensure correct stack alignment:

▶ On procedure entry: subq $8, %rsp
▶ Prior to procedure return: addq $8, %rsp

▶ You’ve seen these in previous code examples, now you know why they’re
used

▶ The Linux printf function will segfault if the stack is misaligned

Ensuring correct stack alignment

▶ To ensure correct stack alignment:
▶ On procedure entry: subq $8, %rsp

▶ Prior to procedure return: addq $8, %rsp
▶ You’ve seen these in previous code examples, now you know why they’re

used
▶ The Linux printf function will segfault if the stack is misaligned

Ensuring correct stack alignment

▶ To ensure correct stack alignment:
▶ On procedure entry: subq $8, %rsp
▶ Prior to procedure return: addq $8, %rsp

▶ You’ve seen these in previous code examples, now you know why they’re
used

▶ The Linux printf function will segfault if the stack is misaligned

Ensuring correct stack alignment

▶ To ensure correct stack alignment:
▶ On procedure entry: subq $8, %rsp
▶ Prior to procedure return: addq $8, %rsp

▶ You’ve seen these in previous code examples, now you know why they’re
used

▶ The Linux printf function will segfault if the stack is misaligned

Ensuring correct stack alignment

▶ To ensure correct stack alignment:
▶ On procedure entry: subq $8, %rsp
▶ Prior to procedure return: addq $8, %rsp

▶ You’ve seen these in previous code examples, now you know why they’re
used

▶ The Linux printf function will segfault if the stack is misaligned

Register use conventions

▶ Very important issue:

▶ There is only one set of registers
▶ Procedures must share them
▶ Register use conventions are rules that all procedures use to avoid

conflicts
▶ Another important issue:
▶ How are argument values passed to called procedures?
▶ Calling conventions typically designate that some argument values are

passed in specific registers
▶ Procedure return value is typically returned in a specific register

Register use conventions

▶ Very important issue:
▶ There is only one set of registers

▶ Procedures must share them
▶ Register use conventions are rules that all procedures use to avoid

conflicts
▶ Another important issue:
▶ How are argument values passed to called procedures?
▶ Calling conventions typically designate that some argument values are

passed in specific registers
▶ Procedure return value is typically returned in a specific register

Register use conventions

▶ Very important issue:
▶ There is only one set of registers
▶ Procedures must share them

▶ Register use conventions are rules that all procedures use to avoid
conflicts

▶ Another important issue:
▶ How are argument values passed to called procedures?
▶ Calling conventions typically designate that some argument values are

passed in specific registers
▶ Procedure return value is typically returned in a specific register

Register use conventions

▶ Very important issue:
▶ There is only one set of registers
▶ Procedures must share them
▶ Register use conventions are rules that all procedures use to avoid

conflicts

▶ Another important issue:
▶ How are argument values passed to called procedures?
▶ Calling conventions typically designate that some argument values are

passed in specific registers
▶ Procedure return value is typically returned in a specific register

Register use conventions

▶ Very important issue:
▶ There is only one set of registers
▶ Procedures must share them
▶ Register use conventions are rules that all procedures use to avoid

conflicts
▶ Another important issue:

▶ How are argument values passed to called procedures?
▶ Calling conventions typically designate that some argument values are

passed in specific registers
▶ Procedure return value is typically returned in a specific register

Register use conventions

▶ Very important issue:
▶ There is only one set of registers
▶ Procedures must share them
▶ Register use conventions are rules that all procedures use to avoid

conflicts
▶ Another important issue:
▶ How are argument values passed to called procedures?

▶ Calling conventions typically designate that some argument values are
passed in specific registers

▶ Procedure return value is typically returned in a specific register

Register use conventions

▶ Very important issue:
▶ There is only one set of registers
▶ Procedures must share them
▶ Register use conventions are rules that all procedures use to avoid

conflicts
▶ Another important issue:
▶ How are argument values passed to called procedures?
▶ Calling conventions typically designate that some argument values are

passed in specific registers

▶ Procedure return value is typically returned in a specific register

Register use conventions

▶ Very important issue:
▶ There is only one set of registers
▶ Procedures must share them
▶ Register use conventions are rules that all procedures use to avoid

conflicts
▶ Another important issue:
▶ How are argument values passed to called procedures?
▶ Calling conventions typically designate that some argument values are

passed in specific registers
▶ Procedure return value is typically returned in a specific register

Do I really need to follow register use conventions?

▶ Register use conventions are conventions

▶ You might (sometimes) be able to violate them and get away with it
▶ Here’s why you should always follow them:
▶ They help you modularize your own code (because they set groundrules

to allow procedures to interact with each other safely)
▶ They allow your code to interoperate with other code, including library

routines and (OS) system calls
▶ Always follow the appropriate register use conventions

Do I really need to follow register use conventions?

▶ Register use conventions are conventions
▶ You might (sometimes) be able to violate them and get away with it

▶ Here’s why you should always follow them:
▶ They help you modularize your own code (because they set groundrules

to allow procedures to interact with each other safely)
▶ They allow your code to interoperate with other code, including library

routines and (OS) system calls
▶ Always follow the appropriate register use conventions

Do I really need to follow register use conventions?

▶ Register use conventions are conventions
▶ You might (sometimes) be able to violate them and get away with it
▶ Here’s why you should always follow them:

▶ They help you modularize your own code (because they set groundrules
to allow procedures to interact with each other safely)

▶ They allow your code to interoperate with other code, including library
routines and (OS) system calls

▶ Always follow the appropriate register use conventions

Do I really need to follow register use conventions?

▶ Register use conventions are conventions
▶ You might (sometimes) be able to violate them and get away with it
▶ Here’s why you should always follow them:
▶ They help you modularize your own code (because they set groundrules

to allow procedures to interact with each other safely)

▶ They allow your code to interoperate with other code, including library
routines and (OS) system calls

▶ Always follow the appropriate register use conventions

Do I really need to follow register use conventions?

▶ Register use conventions are conventions
▶ You might (sometimes) be able to violate them and get away with it
▶ Here’s why you should always follow them:
▶ They help you modularize your own code (because they set groundrules

to allow procedures to interact with each other safely)
▶ They allow your code to interoperate with other code, including library

routines and (OS) system calls

▶ Always follow the appropriate register use conventions

Do I really need to follow register use conventions?

▶ Register use conventions are conventions
▶ You might (sometimes) be able to violate them and get away with it
▶ Here’s why you should always follow them:
▶ They help you modularize your own code (because they set groundrules

to allow procedures to interact with each other safely)
▶ They allow your code to interoperate with other code, including library

routines and (OS) system calls
▶ Always follow the appropriate register use conventions

x86-64 Linux register use conventions

▶ Arguments 1–6 passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9

▶ Argument 7 and beyond, and “large” arguments such as pass-by-value
struct data, passed on stack

▶ Integer or pointer return value returned in %rax
▶ Caller-saved registers: %r10, %r11 (and also the argument registers)
▶ Callee-saved registers: %rbx, %rbp, %r12, %r13, %14, %r15

x86-64 Linux register use conventions

▶ Arguments 1–6 passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9
▶ Argument 7 and beyond, and “large” arguments such as pass-by-value

struct data, passed on stack

▶ Integer or pointer return value returned in %rax
▶ Caller-saved registers: %r10, %r11 (and also the argument registers)
▶ Callee-saved registers: %rbx, %rbp, %r12, %r13, %14, %r15

x86-64 Linux register use conventions

▶ Arguments 1–6 passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9
▶ Argument 7 and beyond, and “large” arguments such as pass-by-value

struct data, passed on stack
▶ Integer or pointer return value returned in %rax

▶ Caller-saved registers: %r10, %r11 (and also the argument registers)
▶ Callee-saved registers: %rbx, %rbp, %r12, %r13, %14, %r15

x86-64 Linux register use conventions

▶ Arguments 1–6 passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9
▶ Argument 7 and beyond, and “large” arguments such as pass-by-value

struct data, passed on stack
▶ Integer or pointer return value returned in %rax
▶ Caller-saved registers: %r10, %r11 (and also the argument registers)

▶ Callee-saved registers: %rbx, %rbp, %r12, %r13, %14, %r15

x86-64 Linux register use conventions

▶ Arguments 1–6 passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9
▶ Argument 7 and beyond, and “large” arguments such as pass-by-value

struct data, passed on stack
▶ Integer or pointer return value returned in %rax
▶ Caller-saved registers: %r10, %r11 (and also the argument registers)
▶ Callee-saved registers: %rbx, %rbp, %r12, %r13, %14, %r15

Caller-saved vs. callee-saved

▶ What happens to register contents when a procedure is called?

▶ Callee-saved registers: caller may assume that the procedure call will
preserve their value
▶ In general, all procedures must save their values to memory before

modifying them, and restore them before returning
▶ Caller-saved registers: caller must not assume that the procedure call will

preserve their value
▶ In general any procedure can freely modify them
▶ A caller might need to save their contents to memory prior to calling a

procedure and restore the value afterwards

Caller-saved vs. callee-saved

▶ What happens to register contents when a procedure is called?
▶ Callee-saved registers: caller may assume that the procedure call will

preserve their value

▶ In general, all procedures must save their values to memory before
modifying them, and restore them before returning

▶ Caller-saved registers: caller must not assume that the procedure call will
preserve their value
▶ In general any procedure can freely modify them
▶ A caller might need to save their contents to memory prior to calling a

procedure and restore the value afterwards

Caller-saved vs. callee-saved

▶ What happens to register contents when a procedure is called?
▶ Callee-saved registers: caller may assume that the procedure call will

preserve their value
▶ In general, all procedures must save their values to memory before

modifying them, and restore them before returning

▶ Caller-saved registers: caller must not assume that the procedure call will
preserve their value
▶ In general any procedure can freely modify them
▶ A caller might need to save their contents to memory prior to calling a

procedure and restore the value afterwards

Caller-saved vs. callee-saved

▶ What happens to register contents when a procedure is called?
▶ Callee-saved registers: caller may assume that the procedure call will

preserve their value
▶ In general, all procedures must save their values to memory before

modifying them, and restore them before returning
▶ Caller-saved registers: caller must not assume that the procedure call will

preserve their value

▶ In general any procedure can freely modify them
▶ A caller might need to save their contents to memory prior to calling a

procedure and restore the value afterwards

Caller-saved vs. callee-saved

▶ What happens to register contents when a procedure is called?
▶ Callee-saved registers: caller may assume that the procedure call will

preserve their value
▶ In general, all procedures must save their values to memory before

modifying them, and restore them before returning
▶ Caller-saved registers: caller must not assume that the procedure call will

preserve their value
▶ In general any procedure can freely modify them

▶ A caller might need to save their contents to memory prior to calling a
procedure and restore the value afterwards

Caller-saved vs. callee-saved

▶ What happens to register contents when a procedure is called?
▶ Callee-saved registers: caller may assume that the procedure call will

preserve their value
▶ In general, all procedures must save their values to memory before

modifying them, and restore them before returning
▶ Caller-saved registers: caller must not assume that the procedure call will

preserve their value
▶ In general any procedure can freely modify them
▶ A caller might need to save their contents to memory prior to calling a

procedure and restore the value afterwards

Using registers

▶ Using registers correctly and effectively is one of the main challenges of
assembly language programming

▶ Some advice:
▶ Use caller-saved registers (%r10, %r11, etc.) for very short-term

temporary values or computations
▶ You can use the argument registers as (caller-saved) temporary registers
▶ Understand that called procedures could modify them!

▶ Use callee-saved registers for longer term values that need to persist
across procedure calls
▶ Use pushq/popq to save and restore their values on procedure entry

and exit

Using registers

▶ Using registers correctly and effectively is one of the main challenges of
assembly language programming

▶ Some advice:

▶ Use caller-saved registers (%r10, %r11, etc.) for very short-term
temporary values or computations

▶ You can use the argument registers as (caller-saved) temporary registers
▶ Understand that called procedures could modify them!

▶ Use callee-saved registers for longer term values that need to persist
across procedure calls
▶ Use pushq/popq to save and restore their values on procedure entry

and exit

Using registers

▶ Using registers correctly and effectively is one of the main challenges of
assembly language programming

▶ Some advice:
▶ Use caller-saved registers (%r10, %r11, etc.) for very short-term

temporary values or computations

▶ You can use the argument registers as (caller-saved) temporary registers
▶ Understand that called procedures could modify them!

▶ Use callee-saved registers for longer term values that need to persist
across procedure calls
▶ Use pushq/popq to save and restore their values on procedure entry

and exit

Using registers

▶ Using registers correctly and effectively is one of the main challenges of
assembly language programming

▶ Some advice:
▶ Use caller-saved registers (%r10, %r11, etc.) for very short-term

temporary values or computations
▶ You can use the argument registers as (caller-saved) temporary registers

▶ Understand that called procedures could modify them!
▶ Use callee-saved registers for longer term values that need to persist

across procedure calls
▶ Use pushq/popq to save and restore their values on procedure entry

and exit

Using registers

▶ Using registers correctly and effectively is one of the main challenges of
assembly language programming

▶ Some advice:
▶ Use caller-saved registers (%r10, %r11, etc.) for very short-term

temporary values or computations
▶ You can use the argument registers as (caller-saved) temporary registers
▶ Understand that called procedures could modify them!

▶ Use callee-saved registers for longer term values that need to persist
across procedure calls
▶ Use pushq/popq to save and restore their values on procedure entry

and exit

Using registers

▶ Using registers correctly and effectively is one of the main challenges of
assembly language programming

▶ Some advice:
▶ Use caller-saved registers (%r10, %r11, etc.) for very short-term

temporary values or computations
▶ You can use the argument registers as (caller-saved) temporary registers
▶ Understand that called procedures could modify them!

▶ Use callee-saved registers for longer term values that need to persist
across procedure calls

▶ Use pushq/popq to save and restore their values on procedure entry
and exit

Using registers

▶ Using registers correctly and effectively is one of the main challenges of
assembly language programming

▶ Some advice:
▶ Use caller-saved registers (%r10, %r11, etc.) for very short-term

temporary values or computations
▶ You can use the argument registers as (caller-saved) temporary registers
▶ Understand that called procedures could modify them!

▶ Use callee-saved registers for longer term values that need to persist
across procedure calls
▶ Use pushq/popq to save and restore their values on procedure entry

and exit

Recursive Fibonacci computation

Compute nth Fibonacci number recursively (warning: exponential-time
algorithm!)

The call stack inherently allows recursion: there is nothing special we need to
do to make it work

Recall that

fib(0) = 0

fib(1) = 1

For n > 1, fib(n) = fib(n − 2) + fib(n − 1)

Recursive Fibonacci function (see fibRec.S for full program)

fib:
cmpl $2, %edi /* check base case */
jae .LrecursiveCase /* if n>=2, do recursive case */
movl %edi, %eax /* base case, just return n */
ret

.LrecursiveCase:
/* recursive case */
pushq %r12 /* preserve value of %r12 */
movl %edi, %r12d /* save n in %r12 */
subl $2, %edi /* compute n-2 */
call fib /* compute fib(n-2) */
movl %r12d, %edi /* put saved n in %edi */
subl $1, %edi /* compute n-1 */
movl %eax, %r12d /* save fib(n-2) in %r12 */
call fib /* compute fib(n-1) */
addl %r12d, %eax /* return fib(n-2)+fib(n-1) */
popq %r12 /* restore value of %r12 */
ret /* done */

Running the program (with N=9)

$ gcc -c -g -no-pie -o fibRec.o fibRec.S
$ gcc -no-pie -o fibRec fibRec.o
$./fibRec
fib(9) = 34

Clicker quiz!

Clicker quiz omitted from public slides

Stack memory allocation

Allocating space for local variables

▶ Sometimes, registers aren’t sufficient to store the data used in a procedure

▶ So, storage for variables must be allocated in memory
▶ Could use global variables (in .data or .bss segments)
▶ Can make program behavior difficult to understand
▶ Not useful for recursive or reentrant functions
▶ In general, wasteful of memory

▶ Could use heap allocation (i.e., malloc, free)
▶ Has overhead due to bookkeeping, locking

▶ The call stack is an ideal place to allocate storage for local variables

Allocating space for local variables

▶ Sometimes, registers aren’t sufficient to store the data used in a procedure
▶ So, storage for variables must be allocated in memory

▶ Could use global variables (in .data or .bss segments)
▶ Can make program behavior difficult to understand
▶ Not useful for recursive or reentrant functions
▶ In general, wasteful of memory

▶ Could use heap allocation (i.e., malloc, free)
▶ Has overhead due to bookkeeping, locking

▶ The call stack is an ideal place to allocate storage for local variables

Allocating space for local variables

▶ Sometimes, registers aren’t sufficient to store the data used in a procedure
▶ So, storage for variables must be allocated in memory
▶ Could use global variables (in .data or .bss segments)

▶ Can make program behavior difficult to understand
▶ Not useful for recursive or reentrant functions
▶ In general, wasteful of memory

▶ Could use heap allocation (i.e., malloc, free)
▶ Has overhead due to bookkeeping, locking

▶ The call stack is an ideal place to allocate storage for local variables

Allocating space for local variables

▶ Sometimes, registers aren’t sufficient to store the data used in a procedure
▶ So, storage for variables must be allocated in memory
▶ Could use global variables (in .data or .bss segments)
▶ Can make program behavior difficult to understand

▶ Not useful for recursive or reentrant functions
▶ In general, wasteful of memory

▶ Could use heap allocation (i.e., malloc, free)
▶ Has overhead due to bookkeeping, locking

▶ The call stack is an ideal place to allocate storage for local variables

Allocating space for local variables

▶ Sometimes, registers aren’t sufficient to store the data used in a procedure
▶ So, storage for variables must be allocated in memory
▶ Could use global variables (in .data or .bss segments)
▶ Can make program behavior difficult to understand
▶ Not useful for recursive or reentrant functions

▶ In general, wasteful of memory
▶ Could use heap allocation (i.e., malloc, free)
▶ Has overhead due to bookkeeping, locking

▶ The call stack is an ideal place to allocate storage for local variables

Allocating space for local variables

▶ Sometimes, registers aren’t sufficient to store the data used in a procedure
▶ So, storage for variables must be allocated in memory
▶ Could use global variables (in .data or .bss segments)
▶ Can make program behavior difficult to understand
▶ Not useful for recursive or reentrant functions
▶ In general, wasteful of memory

▶ Could use heap allocation (i.e., malloc, free)
▶ Has overhead due to bookkeeping, locking

▶ The call stack is an ideal place to allocate storage for local variables

Allocating space for local variables

▶ Sometimes, registers aren’t sufficient to store the data used in a procedure
▶ So, storage for variables must be allocated in memory
▶ Could use global variables (in .data or .bss segments)
▶ Can make program behavior difficult to understand
▶ Not useful for recursive or reentrant functions
▶ In general, wasteful of memory

▶ Could use heap allocation (i.e., malloc, free)

▶ Has overhead due to bookkeeping, locking
▶ The call stack is an ideal place to allocate storage for local variables

Allocating space for local variables

▶ Sometimes, registers aren’t sufficient to store the data used in a procedure
▶ So, storage for variables must be allocated in memory
▶ Could use global variables (in .data or .bss segments)
▶ Can make program behavior difficult to understand
▶ Not useful for recursive or reentrant functions
▶ In general, wasteful of memory

▶ Could use heap allocation (i.e., malloc, free)
▶ Has overhead due to bookkeeping, locking

▶ The call stack is an ideal place to allocate storage for local variables

Allocating space for local variables

▶ Sometimes, registers aren’t sufficient to store the data used in a procedure
▶ So, storage for variables must be allocated in memory
▶ Could use global variables (in .data or .bss segments)
▶ Can make program behavior difficult to understand
▶ Not useful for recursive or reentrant functions
▶ In general, wasteful of memory

▶ Could use heap allocation (i.e., malloc, free)
▶ Has overhead due to bookkeeping, locking

▶ The call stack is an ideal place to allocate storage for local variables

Stack allocation

▶ Stack allocation of storage is simple:
▶ To allocate n bytes, subtract n from %rsp
▶ Updated %rsp is a pointer to the beginning of the allocated memory

▶ To deallocate n bytes, add n to %rsp
▶ Complication: instructions such as push and pop change %rsp
▶ Solution: use the frame pointer register %rbp to keep track of allocated

memory area

Using the frame pointer

On entry to procedure:
pushq %rbp
movq %rsp, %rbp
subq $N, %rsp

Before returning from procedure:
addq $N, %rsp
popq %rbp

%rbp points to a memory location just above a block of N bytes allocated in
the current stack frame. Note that
▶ N should be a multiple of 16 to ensure correct stack alignment
▶ The function will access memory locations in the allocated block using

negative offsets from %rbp

Before allocating space in stack frame

--> pushq %rbp
movq %rsp, %rbp
subq $N, %rsp

After allocating space in stack frame

pushq %rbp
movq %rsp, %rbp
subq $N, %rsp

-->

Putting it all together

▶ Let’s examine a simple program which
▶ Reads two 64 bit integer values from user
▶ Computes their sum using a function
▶ Prints out the sum

▶ Calling scanf to read input requires variables in which to store input
values: we’ll allocate them on the stack

addLongs, C version

#include <stdio.h>

long addLongs(long a, long b);

int main(void) {
long x, y, sum;
printf("Enter two integers: ");
scanf("%ld %ld", &x, &y);
sum = addLongs(x, y);
printf("Sum is %ld\n", sum);

}

long addLongs(long a, long b) {
return a + b;

}

addLongs, assembly version

.section .rodata
sPromptMsg: .string "Enter two integers: "
sInputFmt: .string "%ld %ld"
sResultMsg: .string "Sum is %ld\n"

.section .text

.globl main

.align 16
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp

movl $0, %eax
movq $sPromptMsg, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaq -8(%rbp), %rdx
call scanf

movq -16(%rbp), %rdi
movq -8(%rbp), %rsi
call addLongs

movq $sResultMsg, %rdi
movq %rax, %rsi
call printf

addq $16, %rsp
popq %rbp
ret

.align 16
addLongs:

movq %rdi, %rax
addq %rsi, %rax
ret

addLongs, assembly version

.section .rodata
sPromptMsg: .string "Enter two integers: "
sInputFmt: .string "%ld %ld"
sResultMsg: .string "Sum is %ld\n"

.section .text

.globl main

.align 16
main:

pushq %rbp <-- save orig value of %rbp
movq %rsp, %rbp
subq $16, %rsp

movl $0, %eax
movq $sPromptMsg, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaq -8(%rbp), %rdx
call scanf

movq -16(%rbp), %rdi
movq -8(%rbp), %rsi
call addLongs

movq $sResultMsg, %rdi
movq %rax, %rsi
call printf

addq $16, %rsp
popq %rbp
ret

.align 16
addLongs:

movq %rdi, %rax
addq %rsi, %rax
ret

addLongs, assembly version

.section .rodata
sPromptMsg: .string "Enter two integers: "
sInputFmt: .string "%ld %ld"
sResultMsg: .string "Sum is %ld\n"

.section .text

.globl main

.align 16
main:

pushq %rbp
movq %rsp, %rbp <-- %rbp points to top
subq $16, %rsp of alloc'ed area

movl $0, %eax
movq $sPromptMsg, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaq -8(%rbp), %rdx
call scanf

movq -16(%rbp), %rdi
movq -8(%rbp), %rsi
call addLongs

movq $sResultMsg, %rdi
movq %rax, %rsi
call printf

addq $16, %rsp
popq %rbp
ret

.align 16
addLongs:

movq %rdi, %rax
addq %rsi, %rax
ret

addLongs, assembly version

.section .rodata
sPromptMsg: .string "Enter two integers: "
sInputFmt: .string "%ld %ld"
sResultMsg: .string "Sum is %ld\n"

.section .text

.globl main

.align 16
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp <-- allocate 16 byte area

movl $0, %eax
movq $sPromptMsg, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaq -8(%rbp), %rdx
call scanf

movq -16(%rbp), %rdi
movq -8(%rbp), %rsi
call addLongs

movq $sResultMsg, %rdi
movq %rax, %rsi
call printf

addq $16, %rsp
popq %rbp
ret

.align 16
addLongs:

movq %rdi, %rax
addq %rsi, %rax
ret

addLongs, assembly version

.section .rodata
sPromptMsg: .string "Enter two integers: "
sInputFmt: .string "%ld %ld"
sResultMsg: .string "Sum is %ld\n"

.section .text

.globl main

.align 16
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp

movl $0, %eax
movq $sPromptMsg, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi <-- pass address of 1st var
leaq -8(%rbp), %rdx
call scanf

movq -16(%rbp), %rdi
movq -8(%rbp), %rsi
call addLongs

movq $sResultMsg, %rdi
movq %rax, %rsi
call printf

addq $16, %rsp
popq %rbp
ret

.align 16
addLongs:

movq %rdi, %rax
addq %rsi, %rax
ret

addLongs, assembly version

.section .rodata
sPromptMsg: .string "Enter two integers: "
sInputFmt: .string "%ld %ld"
sResultMsg: .string "Sum is %ld\n"

.section .text

.globl main

.align 16
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp

movl $0, %eax
movq $sPromptMsg, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaq -8(%rbp), %rdx <-- pass address of 2nd var
call scanf

movq -16(%rbp), %rdi
movq -8(%rbp), %rsi
call addLongs

movq $sResultMsg, %rdi
movq %rax, %rsi
call printf

addq $16, %rsp
popq %rbp
ret

.align 16
addLongs:

movq %rdi, %rax
addq %rsi, %rax
ret

addLongs, assembly version

.section .rodata
sPromptMsg: .string "Enter two integers: "
sInputFmt: .string "%ld %ld"
sResultMsg: .string "Sum is %ld\n"

.section .text

.globl main

.align 16
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp

movl $0, %eax
movq $sPromptMsg, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaq -8(%rbp), %rdx
call scanf

movq -16(%rbp), %rdi <-- pass value of 1st var
movq -8(%rbp), %rsi
call addLongs

movq $sResultMsg, %rdi
movq %rax, %rsi
call printf

addq $16, %rsp
popq %rbp
ret

.align 16
addLongs:

movq %rdi, %rax
addq %rsi, %rax
ret

addLongs, assembly version

.section .rodata
sPromptMsg: .string "Enter two integers: "
sInputFmt: .string "%ld %ld"
sResultMsg: .string "Sum is %ld\n"

.section .text

.globl main

.align 16
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp

movl $0, %eax
movq $sPromptMsg, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaq -8(%rbp), %rdx
call scanf

movq -16(%rbp), %rdi
movq -8(%rbp), %rsi <-- pass value of 2nd var
call addLongs

movq $sResultMsg, %rdi
movq %rax, %rsi
call printf

addq $16, %rsp
popq %rbp
ret

.align 16
addLongs:

movq %rdi, %rax
addq %rsi, %rax
ret

addLongs, assembly version

.section .rodata
sPromptMsg: .string "Enter two integers: "
sInputFmt: .string "%ld %ld"
sResultMsg: .string "Sum is %ld\n"

.section .text

.globl main

.align 16
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp

movl $0, %eax
movq $sPromptMsg, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaq -8(%rbp), %rdx
call scanf

movq -16(%rbp), %rdi
movq -8(%rbp), %rsi
call addLongs

movq $sResultMsg, %rdi
movq %rax, %rsi
call printf

addq $16, %rsp <-- deallocate alloc'ed area
popq %rbp
ret

.align 16
addLongs:

movq %rdi, %rax
addq %rsi, %rax
ret

addLongs, assembly version

.section .rodata
sPromptMsg: .string "Enter two integers: "
sInputFmt: .string "%ld %ld"
sResultMsg: .string "Sum is %ld\n"

.section .text

.globl main

.align 16
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp

movl $0, %eax
movq $sPromptMsg, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaq -8(%rbp), %rdx
call scanf

movq -16(%rbp), %rdi
movq -8(%rbp), %rsi
call addLongs

movq $sResultMsg, %rdi
movq %rax, %rsi
call printf

addq $16, %rsp
popq %rbp <-- restore orig value of %rbp
ret

.align 16
addLongs:

movq %rdi, %rax
addq %rsi, %rax
ret

addLongs, assembly version

.section .rodata
sPromptMsg: .string "Enter two integers: "
sInputFmt: .string "%ld %ld"
sResultMsg: .string "Sum is %ld\n"

.section .text

.globl main

.align 16
main:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp

movl $0, %eax
movq $sPromptMsg, %rdi
call printf

movl $0, %eax
movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaq -8(%rbp), %rdx
call scanf

movq -16(%rbp), %rdi
movq -8(%rbp), %rsi
call addLongs

movq $sResultMsg, %rdi
movq %rax, %rsi
call printf

addq $16, %rsp
popq %rbp
ret

.align 16
addLongs: <-- does not use stack, ignore alignment :-P

movq %rdi, %rax
addq %rsi, %rax
ret

Running the program

$ gcc -c -no-pie -o addLongs.o addLongs.S
$ gcc -no-pie -o addLongs addLongs.o
$./addLongs
Enter two integers: 2 3
Sum is 5

Running the program in gdb

$ gdb addLongs
...output omitted...
(gdb) break addLongs.S:28
Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run
Starting program: /home/daveho/... /src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28
28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *)($rbp-16)
$1 = 3
(gdb) print *(long *)($rbp-8)
$2 = 4

Running the program in gdb

$ gdb addLongs
...output omitted...
(gdb) break addLongs.S:28 <-- set breakpoint just after scanf returns
Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run
Starting program: /home/daveho/... /src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28
28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *)($rbp-16)
$1 = 3
(gdb) print *(long *)($rbp-8)
$2 = 4

Running the program in gdb

$ gdb addLongs
...output omitted...
(gdb) break addLongs.S:28
Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run <-- start the program
Starting program: /home/daveho/... /src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28
28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *)($rbp-16)
$1 = 3
(gdb) print *(long *)($rbp-8)
$2 = 4

Running the program in gdb

$ gdb addLongs
...output omitted...
(gdb) break addLongs.S:28
Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run
Starting program: /home/daveho/... /src/control2/addLongs
Enter two integers: 3 4 <-- enter input values

Breakpoint 1, main () at addLongs.S:28
28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *)($rbp-16)
$1 = 3
(gdb) print *(long *)($rbp-8)
$2 = 4

Running the program in gdb

$ gdb addLongs
...output omitted...
(gdb) break addLongs.S:28
Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run
Starting program: /home/daveho/... /src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28
28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *)($rbp-16) <-- print first input value at -16(%rbp)
$1 = 3
(gdb) print *(long *)($rbp-8)
$2 = 4

Running the program in gdb

$ gdb addLongs
...output omitted...
(gdb) break addLongs.S:28
Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run
Starting program: /home/daveho/... /src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28
28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *)($rbp-16)
$1 = 3
(gdb) print *(long *)($rbp-8) <-- print second input value at -8(%rbp)
$2 = 4

Running the program in gdb

$ gdb addLongs
...output omitted...
(gdb) break addLongs.S:28
Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run
Starting program: /home/daveho/... /src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28
28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *)($rbp-16)
$1 = 3
(gdb) print *(long *)($rbp-8)
$2 = 4

	Procedures
	Stack memory allocation

