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Control flow (part 2)

» Procedures
» Stacks:

» Procedure calls and returns
» Storage for local variables and temporary values

» Today's example programs are linked as control2.zip on the course
website



Procedures



Procedures, call stack

» Procedures (a.k.a. functions, subroutines), the most important abstraction
in programming
» Can you imagine trying to write programs without them?
» Call stack: hardware-supported, runtime data structure
» Stores return addresses so procedures know where to return to
» Used to allocate stack frames: per-procedure-call storage area for local
variables, temporary values, and (sometimes) argument values
» As name suggests, is a stack, LIFO discipline (push and pop)



Stack pointer, instruction pointer

» Stack pointer register J,rsp: contains address of current “top” of stack

» Important: stack grows towards lower addresses, so top of stack is at
lower address than bottom of stack

» Instruction pointer register J,rip: contains code address of next
instruction to be updated

» Control flow changes the value of %rip

» Other architectures use the name “program counter” rather than
“instruction pointer”, but they're the same thing



push and pop

» push: push a data value onto the call stack
» E.g., pushq ’rax
» Decrement %rsp by 8
» Store value in %rax at memory location pointed-to by %rsp

» pop: pop a data value from the call stack
» E.g., popq %rax
» Load value at memory location pointed-to by %rsp into %rax
» Increment %rsp by 8

» push and pop are amazingly useful for saving and restoring register values

» Various size operands (1, 2, 4, 8 bytes) can be pushed and popped; need
to consider alignment



push and pop
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push and pop
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call and ret

» call instruction: calls procedure
» Jrip contains address of instruction following call instruction
» Push %rip onto stack (as though pushq %rip was executed): this is
the return address
» Change %rip to address of first instruction of called procedure
» Called procedure starts executing

» ret instruction: return from procedure
» Pop saved return address from stack into %rip (as though popq %rip

was executed)
» Execution continues at return address
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using natural alignment
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Stack alignment

» Recall that storage for multibyte values should be allocated in memory
using natural alignment

» E.g., storage for an 8 byte value should be stored at an address which is
a mulitple of 8

» This is true of stack-allocated values!

» The Linux x86-64 calling conventions require %rsp to be a multiple of 16
at the point of a procedure call (to ensure that 16 byte values can be
accessed on the stack if necessary)

» Issue: on entry to a procedure, %rsp mod 16 = 8 because the call
instruction (which called the procedure) pushed %rip (the program
counter) onto the stack
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Ensuring correct stack alignment

» To ensure correct stack alignment:

» On procedure entry: subq $8, %rsp
» Prior to procedure return: addq $8, %rsp

» You've seen these in previous code examples, now you know why they're
used

» The Linux printf function will segfault if the stack is misaligned
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Register use conventions

» Very important issue:

» There is only one set of registers

» Procedures must share them

» Register use conventions are rules that all procedures use to avoid
conflicts

» Another important issue:
» How are argument values passed to called procedures?
» Calling conventions typically designate that some argument values are

passed in specific registers
» Procedure return value is typically returned in a specific register



Do | really need to follow register use conventions?
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Do | really need to follow register use conventions?

» Register use conventions are conventions
» You might (sometimes) be able to violate them and get away with it
» Here's why you should always follow them:

» They help you modularize your own code (because they set groundrules
to allow procedures to interact with each other safely)

» They allow your code to interoperate with other code, including library
routines and (OS) system calls

» Always follow the appropriate register use conventions
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x86-64 Linux register use conventions

» Arguments 1-6 passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9
» Argument 7 and beyond, and “large” arguments such as pass-by-value
struct data, passed on stack

» Integer or pointer return value returned in %rax
» Caller-saved registers: %r10, %ri11 (and also the argument registers)
» Callee-saved registers: rbx, %rbp, %ri2, %r13, %14, %r15



Caller-saved vs. callee-saved

» What happens to register contents when a procedure is called?
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Caller-saved vs. callee-saved

» What happens to register contents when a procedure is called?

» C(Callee-saved registers: caller may assume that the procedure call will
preserve their value
» In general, all procedures must save their values to memory before

modifying them, and restore them before returning

» Caller-saved registers: caller must not assume that the procedure call will
preserve their value
» In general any procedure can freely modify them

» A caller might need to save their contents to memory prior to calling a
procedure and restore the value afterwards
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Using registers

» Using registers correctly and effectively is one of the main challenges of
assembly language programming
» Some advice:
» Use caller-saved registers (%r10, %r11, etc.) for very short-term
temporary values or computations
» You can use the argument registers as (caller-saved) temporary registers
» Understand that called procedures could modify them!
» Use callee-saved registers for longer term values that need to persist
across procedure calls
» Use pushq/popq to save and restore their values on procedure entry
and exit



Recursive Fibonacci computation

Compute nth Fibonacci number recursively (warning: exponential-time
algorithm!)

The call stack inherently allows recursion: there is nothing special we need to
do to make it work

Recall that
fib(0) =0
fib(1) =1

For n > 1, fib(n) = fib(n — 2) + fib(n — 1)



Recursive Fibonacci function (see fibRec.S for full program)

fib:
cmpl $2, Yedi /* check base case */
jae .LrecursiveCase /* if n>=2, do recursive case */
movl %edi, %eax /* base case, just return n */
ret

.LrecursiveCase:
/* recursive case */
pushq %ri12 /* preserve value of J%ril2 */
movl Y%edi, %ri2d /* save n in %ri12 */
subl $2, %edi /* compute n-2 */
call fib /* compute fib(n-2) */
movl %ri2d, Yedi /* put saved n in %edi */
subl $1, %edi /* compute n-1 */
movl %eax, %ri2d /* save fib(n-2) in %ri12 */
call fib /* compute fib(n-1) */
addl %ri12d, Y%eax /* return fib(n-2)+fib(n-1) */
popq %ri2 /* restore value of %ri2 x/

ret /* done */



Running the program (with N=9)

$ gcc -c -g -no-pie -o fibRec.o fibRec.S
$ gcc -no-pie -o fibRec fibRec.o

$ ./fibRec

fib(9) = 34



Clicker quiz!

Clicker quiz omitted from public slides



Stack memory allocation
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Allocating space for local variables

» Sometimes, registers aren't sufficient to store the data used in a procedure
» So, storage for variables must be allocated in memory
» Could use global variables (in .data or .bss segments)

» Can make program behavior difficult to understand
» Not useful for recursive or reentrant functions
» In general, wasteful of memory

» Could use heap allocation (i.e., malloc, free)
» Has overhead due to bookkeeping, locking

» The call stack is an ideal place to allocate storage for local variables



Stack allocation

» Stack allocation of storage is simple:
» To allocate n bytes, subtract n from %rsp
» Updated %rsp is a pointer to the beginning of the allocated memory
» To deallocate n bytes, add n to %rsp
» Complication: instructions such as push and pop change %rsp

» Solution: use the frame pointer register %rbp to keep track of allocated
memory area



Using the frame pointer

On entry to procedure:

pushq %rbp
movq %rsp, Arbp
subq $N, Yrsp

Before returning from procedure:
addq $N, %rsp
popq %rbp

%rbp points to a memory location just above a block of N bytes allocated in
the current stack frame. Note that

» N should be a multiple of 16 to ensure correct stack alignment

» The function will access memory locations in the allocated block using
negative offsets from %rbp



Before allocating space in stack frame

t

--> pushq J%rbp
movq %I‘Sp, %I‘bp Higher addresses
subq $N, Yrsp

%rbp |:|
%rsp E >

Return address

Lower addresses

/



After allocating space in stack frame

pushq %rbp T
movq %rsp, %rbp Higher addresses

subq $V, %rsp

s [

Return address
%rsp
Saved %rbp
- A
Allocated space N bytes
Y

Y

Lower addresses

/



Putting it all together

» Let's examine a simple program which
» Reads two 64 bit integer values from user
» Computes their sum using a function
» Prints out the sum
» Calling scanf to read input requires variables in which to store input
values: we'll allocate them on the stack



addLongs, C version

#include <stdio.h>
long addLongs(long a, long b);

int main(void) {
long x, y, sum;
printf ("Enter two integers: ");
scanf ("%1d %1d", &x, &y);
sum = addLongs(x, y);
printf("Sum is %1d\n", sum);

}

long addLongs(long a, long b) {
return a + b;

3



addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf
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addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi
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addLongs, assembly version

.section .rodata movq -16(%rbp), %rdi <-- pass value of 1st var
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf



addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi  <-- pass value of 2nd var
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf



addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, %rsp <-- deallocate alloc'ed area
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq %rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf



addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp <-- restore orig value of %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf



addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, Y%eax addLongs: <-- does not use stack, ignore alignment :-P
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf



Running the program

$ gcc -c -no-pie -o addLongs.o addLongs.S
$ gcc -no-pie -o addLongs addLongs.o

$ ./addLongs

Enter two integers: 2 3

Sum is 5



Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28

Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run

Starting program: /home/daveho/.../src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16)
$1 =3

(gdb) print *(long *) ($rbp-8)
$2 = 4



Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28 <-- set breakpoint just after scanf returns
Breakpoint 1 at 0x401172: file addLongs.S, line 28.

(gdb) run

Starting program: /home/daveho/.../src/control2/addLongs

Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16)
$1 =3

(gdb) print *(long *) ($rbp-8)
$2 = 4



Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28

Breakpoint 1 at 0x401172: file addLongs.S, line 28.

(gdb) run <-- start the program
Starting program: /home/daveho/.../src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16)
$1 =3

(gdb) print *(long *) ($rbp-8)
$2 = 4



Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28

Breakpoint 1 at 0x401172: file addLongs.S, line 28.

(gdb) run
Starting program: /home/daveho/.../src/control2/addLongs
Enter two integers: 3 4 <-- enter input values

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16)
$1 =3

(gdb) print *(long *) ($rbp-8)
$2 = 4



Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28

Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run

Starting program: /home/daveho/.../src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16) <-- print first input value at -16(%rbp)
$1 =3

(gdb) print *(long *) ($rbp-8)
$2 = 4



Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28

Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run

Starting program: /home/daveho/.../src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16)
$1 =3

(gdb) print *(long *)($rbp-8) <-- print second input value at -8(%rbp)
$2 = 4



Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28

Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run

Starting program: /home/daveho/.../src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16)
$1 =3

(gdb) print *(long *) ($rbp-8)
$2 = 4
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