Lecture 9: Procedures

David Hovemeyer

February 9, 2026

601.229 Computer Systems Fundamentals

=N

SN

Control flow (part 2)

» Procedures
» Stacks:

» Procedure calls and returns
» Storage for local variables and temporary values

» Today's example programs are linked as control2.zip on the course
website

Procedures

Procedures, call stack

» Procedures (a.k.a. functions, subroutines), the most important abstraction
in programming
» Can you imagine trying to write programs without them?
» Call stack: hardware-supported, runtime data structure
» Stores return addresses so procedures know where to return to
» Used to allocate stack frames: per-procedure-call storage area for local
variables, temporary values, and (sometimes) argument values
» As name suggests, is a stack, LIFO discipline (push and pop)

Stack pointer, instruction pointer

» Stack pointer register J,rsp: contains address of current “top” of stack

» Important: stack grows towards lower addresses, so top of stack is at
lower address than bottom of stack

» Instruction pointer register J,rip: contains code address of next
instruction to be updated

» Control flow changes the value of %rip

» Other architectures use the name “program counter” rather than
“instruction pointer”, but they're the same thing

push and pop

» push: push a data value onto the call stack
» E.g., pushq ’rax
» Decrement %rsp by 8
» Store value in %rax at memory location pointed-to by %rsp

» pop: pop a data value from the call stack
» E.g., popq %rax
» Load value at memory location pointed-to by %rsp into %rax
» Increment %rsp by 8

» push and pop are amazingly useful for saving and restoring register values

» Various size operands (1, 2, 4, 8 bytes) can be pushed and popped; need
to consider alignment

push and pop

Yorax
Y%rbx

Yorex

%rsp

Registers

deadbeef00112233

Stack memory
(as 32 bit dwords)

cafef00d44556677

000000008899aabb

10064

10000

10004

10008

10012

10016

10020

10024

10028

10032

10036

10040

10044

10048

10052

10056

10060

pushq %rax
pushq %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

push and pop

Yorax
Y%rbx

Yorex

%rsp

Registers

deadbeef00112233

Stack memory
(as 32 bit dwords)

cafef00d44556677

000000008899aabb

10056

00112233

deadbeef

10000

10004

10008

10012

10016

10020

10024

10028

10032

10036

10040

10044

10048

10052

10056

10060

pushq %rax
pushq %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

push and pop

Yorax
Y%rbx

Yorex

%rsp

Registers

deadbeef00112233

Stack memory
(as 32 bit dwords)

cafef00d44556677

000000008899aabb

10048

44556677

cafef00d

00112233

deadbeef

10000

10004

10008

10012

10016

10020

10024

10028

10032

10036

10040

10044

10048

10052

10056

10060

pushq %rax
pushqg %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

push and pop

Yorax
Y%rbx

Yorex

%rsp

Registers

deadbeef00112233

Stack memory
(as 32 bit dwords)

cafef00d44556677

000000008899aabb

10040

8899aabb

00000000

44556677

cafef00d

00112233

deadbeef

10000

10004

10008

10012

10016

10020

10024

10028

10032

10036

10040

10044

10048

10052

10056

10060

pushq %rax
pushq %rbx
pushqg %rcx
popq %rbx
popq %rax
popq %rcx

push and pop

Yorax
Y%rbx

Yorex

%rsp

Registers

deadbeef00112233

000000008899aabb

000000008899aabb

10048

Fgf

Stack memory
(as 32 bit dwords)

8899aabb

00000000

44556677

cafef00d

00112233

deadbeef

10000

10004

10008

10012

10016

10020

10024

10028

10032

10036

10040

10044

10048

10052

10056

10060

pushq %rax
pushq %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

push and pop

Yorax
Y%rbx

Yorex

%rsp

Stack memory

Registers (as 32 bit dwords)

cafef00d44556677

000000008899aabb

000000008899aabb

10056 };;;;—

8899aabb
00000000
44556677
cafef00d
00112233

deadbeef

10000

10004

10008

10012

10016

10020

10024

10028

10032

10036

10040

10044

10048

10052

10056

10060

pushq %rax
pushq %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

push and pop

Yorax
Y%rbx

Yorex

%rsp

Registers

cafef00d44556677

Stack memory
(as 32 bit dwords)

000000008899aabb

deadbeef00112233

10064

8899aabb

00000000

44556677

cafef00d

00112233

deadbeef

10000

10004

10008

10012

10016

10020

10024

10028

10032

10036

10040

10044

10048

10052

10056

10060

pushq %rax
pushq %rbx
pushq %rcx
popq %rbx
popq %rax
popq %rcx

call and ret

» call instruction: calls procedure
» Jrip contains address of instruction following call instruction
» Push %rip onto stack (as though pushq %rip was executed): this is
the return address
» Change %rip to address of first instruction of called procedure
» Called procedure starts executing

» ret instruction: return from procedure
» Pop saved return address from stack into %rip (as though popq %rip

was executed)
» Execution continues at return address

Stack alignment

» Recall that storage for multibyte values should be allocated in memory
using natural alignment

Stack alignment

» Recall that storage for multibyte values should be allocated in memory
using natural alignment
» E.g., storage for an 8 byte value should be stored at an address which is
a mulitple of 8

Stack alignment

» Recall that storage for multibyte values should be allocated in memory
using natural alignment

» E.g., storage for an 8 byte value should be stored at an address which is
a mulitple of 8

» This is true of stack-allocated values!

Stack alignment

» Recall that storage for multibyte values should be allocated in memory
using natural alignment

» E.g., storage for an 8 byte value should be stored at an address which is
a mulitple of 8
» This is true of stack-allocated values!

» The Linux x86-64 calling conventions require %rsp to be a multiple of 16
at the point of a procedure call (to ensure that 16 byte values can be
accessed on the stack if necessary)

Stack alignment

» Recall that storage for multibyte values should be allocated in memory
using natural alignment

» E.g., storage for an 8 byte value should be stored at an address which is
a mulitple of 8

» This is true of stack-allocated values!

» The Linux x86-64 calling conventions require %rsp to be a multiple of 16
at the point of a procedure call (to ensure that 16 byte values can be
accessed on the stack if necessary)

» Issue: on entry to a procedure, %rsp mod 16 = 8 because the call
instruction (which called the procedure) pushed %rip (the program
counter) onto the stack

Ensuring correct stack alignment

» To ensure correct stack alignment:

Ensuring correct stack alignment

» To ensure correct stack alignment:
» On procedure entry: subq $8, %rsp

Ensuring correct stack alignment

» To ensure correct stack alignment:

» On procedure entry: subq $8, %rsp
» Prior to procedure return: addq $8, %rsp

Ensuring correct stack alignment

» To ensure correct stack alignment:
» On procedure entry: subq $8, %rsp
» Prior to procedure return: addq $8, %rsp

» You've seen these in previous code examples, now you know why they're
used

Ensuring correct stack alignment

» To ensure correct stack alignment:

» On procedure entry: subq $8, %rsp
» Prior to procedure return: addq $8, %rsp

» You've seen these in previous code examples, now you know why they're
used

» The Linux printf function will segfault if the stack is misaligned

Register use conventions

» Very important issue:

Register use conventions

» Very important issue:
» There is only one set of registers

Register use conventions

» Very important issue:

» There is only one set of registers
» Procedures must share them

Register use conventions

» Very important issue:
» There is only one set of registers
» Procedures must share them
» Register use conventions are rules that all procedures use to avoid
conflicts

Register use conventions

» Very important issue:
» There is only one set of registers
» Procedures must share them
» Register use conventions are rules that all procedures use to avoid
conflicts

» Another important issue:

Register use conventions

» Very important issue:
» There is only one set of registers
» Procedures must share them
» Register use conventions are rules that all procedures use to avoid
conflicts
» Another important issue:

» How are argument values passed to called procedures?

Register use conventions

» Very important issue:
» There is only one set of registers
» Procedures must share them
» Register use conventions are rules that all procedures use to avoid
conflicts

» Another important issue:

» How are argument values passed to called procedures?
» Calling conventions typically designate that some argument values are
passed in specific registers

Register use conventions

» Very important issue:

» There is only one set of registers

» Procedures must share them

» Register use conventions are rules that all procedures use to avoid
conflicts

» Another important issue:
» How are argument values passed to called procedures?
» Calling conventions typically designate that some argument values are

passed in specific registers
» Procedure return value is typically returned in a specific register

Do | really need to follow register use conventions?

» Register use conventions are conventions

Do | really need to follow register use conventions?

» Register use conventions are conventions

» You might (sometimes) be able to violate them and get away with it

Do | really need to follow register use conventions?

» Register use conventions are conventions
» You might (sometimes) be able to violate them and get away with it

» Here's why you should always follow them:

Do | really need to follow register use conventions?

» Register use conventions are conventions
» You might (sometimes) be able to violate them and get away with it
» Here's why you should always follow them:

» They help you modularize your own code (because they set groundrules
to allow procedures to interact with each other safely)

Do | really need to follow register use conventions?

» Register use conventions are conventions
» You might (sometimes) be able to violate them and get away with it
» Here's why you should always follow them:

» They help you modularize your own code (because they set groundrules
to allow procedures to interact with each other safely)

» They allow your code to interoperate with other code, including library
routines and (OS) system calls

Do | really need to follow register use conventions?

» Register use conventions are conventions
» You might (sometimes) be able to violate them and get away with it
» Here's why you should always follow them:

» They help you modularize your own code (because they set groundrules
to allow procedures to interact with each other safely)

» They allow your code to interoperate with other code, including library
routines and (OS) system calls

» Always follow the appropriate register use conventions

x86-64 Linux register use conventions

» Arguments 1-6 passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9

x86-64 Linux register use conventions

» Arguments 1-6 passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9
» Argument 7 and beyond, and “large” arguments such as pass-by-value
struct data, passed on stack

x86-64 Linux register use conventions

» Arguments 1-6 passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9
» Argument 7 and beyond, and “large” arguments such as pass-by-value
struct data, passed on stack

» Integer or pointer return value returned in %rax

x86-64 Linux register use conventions

» Arguments 1-6 passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9
» Argument 7 and beyond, and “large” arguments such as pass-by-value
struct data, passed on stack

» Integer or pointer return value returned in %rax

» Caller-saved registers: %r10, %ri11 (and also the argument registers)

x86-64 Linux register use conventions

» Arguments 1-6 passed in %rdi, %rsi, %rdx, %rcx, %r8, %r9
» Argument 7 and beyond, and “large” arguments such as pass-by-value
struct data, passed on stack

» Integer or pointer return value returned in %rax
» Caller-saved registers: %r10, %ri11 (and also the argument registers)
» Callee-saved registers: rbx, %rbp, %ri2, %r13, %14, %r15

Caller-saved vs. callee-saved

» What happens to register contents when a procedure is called?

Caller-saved vs. callee-saved

» What happens to register contents when a procedure is called?

» C(Callee-saved registers: caller may assume that the procedure call will
preserve their value

Caller-saved vs. callee-saved

» What happens to register contents when a procedure is called?
» C(Callee-saved registers: caller may assume that the procedure call will
preserve their value

» In general, all procedures must save their values to memory before
modifying them, and restore them before returning

Caller-saved vs. callee-saved

» What happens to register contents when a procedure is called?
» C(Callee-saved registers: caller may assume that the procedure call will
preserve their value
» In general, all procedures must save their values to memory before
modifying them, and restore them before returning

» Caller-saved registers: caller must not assume that the procedure call will
preserve their value

Caller-saved vs. callee-saved

» What happens to register contents when a procedure is called?

» C(Callee-saved registers: caller may assume that the procedure call will
preserve their value
» In general, all procedures must save their values to memory before

modifying them, and restore them before returning

» Caller-saved registers: caller must not assume that the procedure call will
preserve their value
» In general any procedure can freely modify them

Caller-saved vs. callee-saved

» What happens to register contents when a procedure is called?

» C(Callee-saved registers: caller may assume that the procedure call will
preserve their value
» In general, all procedures must save their values to memory before

modifying them, and restore them before returning

» Caller-saved registers: caller must not assume that the procedure call will
preserve their value
» In general any procedure can freely modify them

» A caller might need to save their contents to memory prior to calling a
procedure and restore the value afterwards

Using registers

» Using registers correctly and effectively is one of the main challenges of
assembly language programming

Using registers

» Using registers correctly and effectively is one of the main challenges of
assembly language programming

» Some advice:

Using registers

» Using registers correctly and effectively is one of the main challenges of
assembly language programming

» Some advice:

» Use caller-saved registers (%r10, %r11, etc.) for very short-term
temporary values or computations

Using registers

» Using registers correctly and effectively is one of the main challenges of
assembly language programming
» Some advice:
» Use caller-saved registers (%r10, %r11, etc.) for very short-term
temporary values or computations
» You can use the argument registers as (caller-saved) temporary registers

Using registers

» Using registers correctly and effectively is one of the main challenges of
assembly language programming
» Some advice:

» Use caller-saved registers (%r10, %r11, etc.) for very short-term
temporary values or computations
» You can use the argument registers as (caller-saved) temporary registers

» Understand that called procedures could modify them!

Using registers

» Using registers correctly and effectively is one of the main challenges of
assembly language programming
» Some advice:
» Use caller-saved registers (%r10, %r11, etc.) for very short-term
temporary values or computations
» You can use the argument registers as (caller-saved) temporary registers
» Understand that called procedures could modify them!
» Use callee-saved registers for longer term values that need to persist
across procedure calls

Using registers

» Using registers correctly and effectively is one of the main challenges of
assembly language programming
» Some advice:
» Use caller-saved registers (%r10, %r11, etc.) for very short-term
temporary values or computations
» You can use the argument registers as (caller-saved) temporary registers
» Understand that called procedures could modify them!
» Use callee-saved registers for longer term values that need to persist
across procedure calls
» Use pushq/popq to save and restore their values on procedure entry
and exit

Recursive Fibonacci computation

Compute nth Fibonacci number recursively (warning: exponential-time
algorithm!)

The call stack inherently allows recursion: there is nothing special we need to
do to make it work

Recall that
fib(0) =0
fib(1) =1

For n > 1, fib(n) = fib(n — 2) + fib(n — 1)

Recursive Fibonacci function (see fibRec.S for full program)

fib:
cmpl $2, Yedi /* check base case */
jae .LrecursiveCase /* if n>=2, do recursive case */
movl %edi, %eax /* base case, just return n */
ret

.LrecursiveCase:
/* recursive case */
pushq %ri12 /* preserve value of J%ril2 */
movl Y%edi, %ri2d /* save n in %ri12 */
subl $2, %edi /* compute n-2 */
call fib /* compute fib(n-2) */
movl %ri2d, Yedi /* put saved n in %edi */
subl $1, %edi /* compute n-1 */
movl %eax, %ri2d /* save fib(n-2) in %ri12 */
call fib /* compute fib(n-1) */
addl %ri12d, Y%eax /* return fib(n-2)+fib(n-1) */
popq %ri2 /* restore value of %ri2 x/

ret /* done */

Running the program (with N=9)

$ gcc -c -g -no-pie -o fibRec.o fibRec.S
$ gcc -no-pie -o fibRec fibRec.o

$./fibRec

fib(9) = 34

Clicker quiz!

Clicker quiz omitted from public slides

Stack memory allocation

Allocating space for local variables

» Sometimes, registers aren't sufficient to store the data used in a procedure

Allocating space for local variables

» Sometimes, registers aren't sufficient to store the data used in a procedure
» So, storage for variables must be allocated in memory

Allocating space for local variables

» Sometimes, registers aren't sufficient to store the data used in a procedure
» So, storage for variables must be allocated in memory

» Could use global variables (in .data or .bss segments)

Allocating space for local variables

» Sometimes, registers aren't sufficient to store the data used in a procedure
» So, storage for variables must be allocated in memory
» Could use global variables (in .data or .bss segments)

» Can make program behavior difficult to understand

Allocating space for local variables

» Sometimes, registers aren't sufficient to store the data used in a procedure
» So, storage for variables must be allocated in memory
» Could use global variables (in .data or .bss segments)

» Can make program behavior difficult to understand
» Not useful for recursive or reentrant functions

Allocating space for local variables

» Sometimes, registers aren't sufficient to store the data used in a procedure
» So, storage for variables must be allocated in memory
» Could use global variables (in .data or .bss segments)

» Can make program behavior difficult to understand
» Not useful for recursive or reentrant functions
» In general, wasteful of memory

Allocating space for local variables

» Sometimes, registers aren't sufficient to store the data used in a procedure
» So, storage for variables must be allocated in memory
» Could use global variables (in .data or .bss segments)

» Can make program behavior difficult to understand
» Not useful for recursive or reentrant functions
» In general, wasteful of memory

» Could use heap allocation (i.e., malloc, free)

Allocating space for local variables

» Sometimes, registers aren't sufficient to store the data used in a procedure
» So, storage for variables must be allocated in memory
» Could use global variables (in .data or .bss segments)
» Can make program behavior difficult to understand
» Not useful for recursive or reentrant functions
» In general, wasteful of memory
» Could use heap allocation (i.e., malloc, free)
» Has overhead due to bookkeeping, locking

Allocating space for local variables

» Sometimes, registers aren't sufficient to store the data used in a procedure
» So, storage for variables must be allocated in memory
» Could use global variables (in .data or .bss segments)

» Can make program behavior difficult to understand
» Not useful for recursive or reentrant functions
» In general, wasteful of memory

» Could use heap allocation (i.e., malloc, free)
» Has overhead due to bookkeeping, locking

» The call stack is an ideal place to allocate storage for local variables

Stack allocation

» Stack allocation of storage is simple:
» To allocate n bytes, subtract n from %rsp
» Updated %rsp is a pointer to the beginning of the allocated memory
» To deallocate n bytes, add n to %rsp
» Complication: instructions such as push and pop change %rsp

» Solution: use the frame pointer register %rbp to keep track of allocated
memory area

Using the frame pointer

On entry to procedure:

pushq %rbp
movq %rsp, Arbp
subq $N, Yrsp

Before returning from procedure:
addq $N, %rsp
popq %rbp

%rbp points to a memory location just above a block of N bytes allocated in
the current stack frame. Note that

» N should be a multiple of 16 to ensure correct stack alignment

» The function will access memory locations in the allocated block using
negative offsets from %rbp

Before allocating space in stack frame

t

--> pushq J%rbp
movq %I‘Sp, %I‘bp Higher addresses
subq $N, Yrsp

%rbp |:|
%rsp E >

Return address

Lower addresses

/

After allocating space in stack frame

pushq %rbp T
movq %rsp, %rbp Higher addresses

subq $V, %rsp

s [

Return address
%rsp
Saved %rbp
- A
Allocated space N bytes
Y

Y

Lower addresses

/

Putting it all together

» Let's examine a simple program which
» Reads two 64 bit integer values from user
» Computes their sum using a function
» Prints out the sum
» Calling scanf to read input requires variables in which to store input
values: we'll allocate them on the stack

addLongs, C version

#include <stdio.h>
long addLongs(long a, long b);

int main(void) {
long x, y, sum;
printf ("Enter two integers: ");
scanf ("%1d %1d", &x, &y);
sum = addLongs(x, y);
printf("Sum is %1d\n", sum);

}

long addLongs(long a, long b) {
return a + b;

3

addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf

addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp <-- save orig value of Yrbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf

addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp
movq %rsp, %rbp <-- Jrbp points to top ret
subq $16, %rsp of alloc'ed area
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf

addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp <-- allocate 16 byte area
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf

addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi

leaq -16(%rbp), %rsi <-- pass address of 1st var
leaqg -8(%rbp), %rdx

call scanf

addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi

leaq -16(%rbp), %rsi

leaq -8(%rbp), %rdx <-- pass address of 2nd var
call scanf

addLongs, assembly version

.section .rodata movq -16(%rbp), %rdi <-- pass value of 1st var
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf

addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi <-- pass value of 2nd var
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf

addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, %rsp <-- deallocate alloc'ed area
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq %rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf

addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp <-- restore orig value of %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, %eax addLongs:
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf

addLongs, assembly version

.section .rodata movq -16(Yrbp), %rdi
sPromptMsg: .string "Enter two integers: " movq -8(%rbp), %rsi
sInputFmt: .string "%1d %1d" call addLongs

sResultMsg: .string "Sum is %1d\n"
movq $sResultMsg, %rdi

.section .text movq %rax, hrsi
.globl main call printf
.align 16
main: addq $16, ’%rsp
pushq %rbp popq %rbp
movq %rsp, %rbp ret
subq $16, %rsp
.align 16
movl $0, Y%eax addLongs: <-- does not use stack, ignore alignment :-P
movq $sPromptMsg, %rdi movq %rdi, %rax
call printf addq Y%rsi, %rax
ret

movl $0, %eax

movq $sInputFmt, %rdi
leaq -16(%rbp), %rsi
leaqg -8(%rbp), %rdx
call scanf

Running the program

$ gcc -c -no-pie -o addLongs.o addLongs.S
$ gcc -no-pie -o addLongs addLongs.o

$./addLongs

Enter two integers: 2 3

Sum is 5

Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28

Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run

Starting program: /home/daveho/.../src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16)
$1 =3

(gdb) print *(long *) ($rbp-8)
$2 = 4

Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28 <-- set breakpoint just after scanf returns
Breakpoint 1 at 0x401172: file addLongs.S, line 28.

(gdb) run

Starting program: /home/daveho/.../src/control2/addLongs

Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16)
$1 =3

(gdb) print *(long *) ($rbp-8)
$2 = 4

Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28

Breakpoint 1 at 0x401172: file addLongs.S, line 28.

(gdb) run <-- start the program
Starting program: /home/daveho/.../src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16)
$1 =3

(gdb) print *(long *) ($rbp-8)
$2 = 4

Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28

Breakpoint 1 at 0x401172: file addLongs.S, line 28.

(gdb) run
Starting program: /home/daveho/.../src/control2/addLongs
Enter two integers: 3 4 <-- enter input values

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16)
$1 =3

(gdb) print *(long *) ($rbp-8)
$2 = 4

Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28

Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run

Starting program: /home/daveho/.../src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16) <-- print first input value at -16(%rbp)
$1 =3

(gdb) print *(long *) ($rbp-8)
$2 = 4

Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28

Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run

Starting program: /home/daveho/.../src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16)
$1 =3

(gdb) print *(long *)($rbp-8) <-- print second input value at -8(%rbp)
$2 = 4

Running the program in gdb

$ gdb addLongs

...output omitted...

(gdb) break addLongs.S:28

Breakpoint 1 at 0x401172: file addLongs.S, line 28.
(gdb) run

Starting program: /home/daveho/.../src/control2/addLongs
Enter two integers: 3 4

Breakpoint 1, main () at addLongs.S:28

28 movq -16(%rbp), %rdi /* pass first value */
(gdb) print *(long *) ($rbp-16)
$1 =3

(gdb) print *(long *) ($rbp-8)
$2 = 4

	Procedures
	Stack memory allocation

