
Lecture 11: Code and data interactions, buffer
overflows

David Hovemeyer

February 16, 2026

601.229 Computer Systems Fundamentals

Buffer overflows

A dangerous function

#include <stdio.h>

char *gets(char *s);

gets reads a single line of input from stdin and stores it in the character
array pointed to by s

Why is this dangerous?

There is no way to ensure that the character array is large enough to store the
input

A dangerous function

#include <stdio.h>

char *gets(char *s);

gets reads a single line of input from stdin and stores it in the character
array pointed to by s

Why is this dangerous?

There is no way to ensure that the character array is large enough to store the
input

A dangerous function

#include <stdio.h>

char *gets(char *s);

gets reads a single line of input from stdin and stores it in the character
array pointed to by s

Why is this dangerous?

There is no way to ensure that the character array is large enough to store the
input

Clicker quiz!

Clicker quiz omitted from public slides

Memory safety

▶ C is a memory-unsafe language
▶ No bounds checking of array accesses
▶ No restrictions on pointers:

uint64_t x = 0xDEADBEEF;
char *s = (char *) x;
strcpy(s, "Hello, world!");

▶ Invalid memory references are an all-too-common source of bugs in C
programs

▶ What are the consequences of an invalid memory reference?

segfaults

▶ If you’re lucky, an invalid memory reference will crash the program with a
segmentation violation, a.k.a. segfault

▶ Recall (from Lecture 6) using the pmap program to view a running
program’s memory map:

29208: ./art
0000562d71c36000 4K r-x-- art
0000562d71e36000 4K r---- art
0000562d71e37000 4K rw--- art
0000562d735fc000 132K rw--- [anon]
...etc...

▶ Memory references outside a valid region of virtual memory, or which
violate access permissions (e.g., store to read-only region), result in a
processor execption that is handled by the OS kernel

▶ Usual result is that OS sends a signal that terminates the running program

Memory corruption

▶ A much worse consequence of an invalid memory store: data is corrupted
▶ A variable or array element is overwritten
▶ A saved register value or temporary value is overwritten
▶ A return address is overwritten (this is particularly bad, as we’ll see

shortly)
▶ In general, once a program makes an invalid memory reference, it cannot

be trusted to behave correctly
▶ This is why valgrind is such an important tool

A dangerous program

Based on example in textbook (code in buf.zip on course website):
#include <stdio.h>

void echo(void) {
char buf[4];
gets(buf);
puts(buf);

}

int main(void) {
printf("Enter a line of text:\n");
echo();
return 0;

}

A dangerous program

Based on example in textbook (code in buf.zip on course website):
#include <stdio.h>

void echo(void) {
char buf[4]; <-- small buffer, safe only if string length 3 or less
gets(buf);
puts(buf);

}

int main(void) {
printf("Enter a line of text:\n");
echo();
return 0;

}

Compiling and running

$ gcc -Og -no-pie -Wall -Wextra -fno-stack-protector -o danger danger.c
...warning about implicit declaration of gets omitted...
...warning from linker about gets being dangerous omitted...
$./danger
Enter a line of text:
Hi there!
Hi there!
$ echo $?
0

Wait...why did the program behave correctly?

Compiling and running

$ gcc -Og -no-pie -Wall -Wextra -fno-stack-protector -o danger danger.c
...warning about implicit declaration of gets omitted...
...warning from linker about gets being dangerous omitted...
$./danger
Enter a line of text:
Hi there!
Hi there!
$ echo $?
0

Wait...why did the program behave correctly?

Inspect the generated code

gcc’s -S option translates C code (.c file) into assembly language (.s file)

$ gcc -Og -no-pie -fno-stack-protector -S danger.c
...warning about implicit declaration of gets omitted...
$ head -8 danger.s

.file "danger.c"

.text

.globl echo

.type echo, @function
echo:
.LFB23:

.cfi_startproc
pushq %rbx

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx <-- save %rbx (callee-saved register)
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp <-- reserve 16 bytes of space in stack frame
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx <-- put base address of buf in %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi <-- pass base address of buf to gets
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax <-- no vector args to gets
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT <-- call gets
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi <-- pass base address of buf to puts
call puts@PLT
addq $16, %rsp
popq %rbx
ret

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT <-- call puts
addq $16, %rsp
popq %rbx
ret

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp <-- de-allocate space in stack frame
popq %rbx
ret

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx <-- restore %rbx
ret

Tracing the danger program

On entry to echo function:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

Tracing the danger program

After pushing %rbx:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

Tracing the danger program

After reserving 16 bytes in stack frame:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

Tracing the danger program

After loading base address of buf into %rbx:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

Tracing the danger program

After loading base address of buf into %rbx:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

Exactly 12 bytes can be
stored before overwriting
the return address

Tracing the danger program

Pass base address of buf to gets:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

Tracing the danger program

Just before call to gets:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

Explanation of behavior

▶ The danger program appeared to work when the input was Hi there!
because the string only requires 10 bytes to store, and 12 bytes were
available

▶ The saved %rbx value is partially overwritten, but main (the caller)
wasn’t using that register
▶ Hard to know whether main’s caller was using it

We got lucky

Explanation of behavior

▶ The danger program appeared to work when the input was Hi there!
because the string only requires 10 bytes to store, and 12 bytes were
available

▶ The saved %rbx value is partially overwritten, but main (the caller)
wasn’t using that register
▶ Hard to know whether main’s caller was using it

We got lucky

Overwriting the return address

▶ When the return address is overwritten, control won’t return to the
correct instruction when the function returns

▶ What could happen?

The code could crash

$./danger
Enter a line of text:
Hello, world!
Hello, world!
Segmentation fault (core dumped)

▶ The string Hello, world! requires 14 bytes to represent, so the first
two bytes of the return address are overwritten

▶ Control returns to a zeroed region of memory
▶ The bytes 00 00 encode the instruction add %al,(%rax)
▶ %rax contains the return value of puts, which is 14
▶ No memory is mapped at address 14, so a segmentation fault occurs

The code could crash

$./danger
Enter a line of text:
Hello, world!
Hello, world!
Segmentation fault (core dumped)

▶ The string Hello, world! requires 14 bytes to represent, so the first
two bytes of the return address are overwritten

▶ Control returns to a zeroed region of memory
▶ The bytes 00 00 encode the instruction add %al,(%rax)
▶ %rax contains the return value of puts, which is 14
▶ No memory is mapped at address 14, so a segmentation fault occurs

Vulnerability to untrusted data

▶ Let’s assume that the input sent to the program is untrusted
▶ I.e., we should assume that it was generated by a malicious user who

wants to take control of our computer and do nefarious things
▶ For many kinds of programs — especially network applications — most

or all input data is untrusted
▶ Because of the buffer overflow, the input sent to the program can change

the echo function’s return address to an arbitrary value
▶ This means the malicious user has (some) control over which code

executes when the function returns
▶ This is extremely bad!

▶ If a malicious actor (“attacker”) knows that a buffer overflow bug exists,
what does it allow them to do?

Executing arbitrary code from the stack

▶ In the previous (32-bit) x86 architecture, any region of memory marked as
readable is also executable

▶ The attacker can send code that will be written onto the stack
▶ The malicious data must overwrite the return address with the location

of the exploit code (on the compromised stack)
▶ This requires knowing (or guessing) the stack pointer’s value (so that

control “returns” to the code on the stack)

Nop sleds

▶ To make arbitrary code execution more feasible, attacker can construct a
“nop sled”: a long series of nop (do nothing) instructions leading to
exploit code
▶ As long as forged return address hits the nop sled, the exploit code will

execute
▶ This allows the exploit to work (with some probability) even if the exact

stack pointer value isn’t known (the guess just has to be “close
enough”)

Exploiting existing code

▶ Another way of exploiting a buffer overflow is to overwrite the return
address with the address of an instruction in the running program

▶ If the target instruction is chosen carefully, it may be able to cause the
execution of an arbitrary function with arbitrary arguments

▶ For example, if the return address is overwritten with a code address
leading to the execution of the system function, an arbitrary program
could be executed
▶ The exploit must somehow manage to forge argument(s): pop

instructions are useful for this

The costs of buffer overflow vulnerabilities

▶ Security compromises of computer systems cost the U.S. economy many
billions of dollars anually

▶ Buffer overflows are an important category of security vulnerability
▶ But there are many other types of vulnerabilities!

Mitigations for buffer overflows

Mitigations for buffer overflows

▶ What can we do about buffer overflows?
▶ Write code that doesn’t have bugs
▶ Use memory-safe programming languages
▶ Make stack non-executable
▶ Address space randomization
▶ Detect stack smashing

Write code that doesn’t have bugs

▶ There are lots of things we can do to improve code quality:
▶ Thorough testing
▶ Code reviews
▶ Static analysis

▶ These are all good ideas, and they will help
▶ None of these techniques will catch all bugs

Use memory-safe programming languages

▶ There are programming languages which guarantee memory safety: Java,
Rust (except for “unsafe” code), etc.
▶ Memory references are checked at compile time and/or runtime to

ensure that only valid memory locations are accessed by the program
▶ These languages can (in principle) eliminate the possibility of buffer

overflows
▶ Other kinds of security vulnerabilities are still possible

▶ Choose the right language for the job

Make stack non-executable

▶ x86-64 systems allow regions of memory to be marked as non-executable
▶ Attempt to execute code from non-executable regions results in a

processor exception which can be handled by the OS kernel
▶ This can eliminate the possibility of a buffer overflow resulting in arbitrary

code execution from the stack
▶ Recall example memory map from Lecture 6 (stack is not executable):

00007fff84484000 132K rw--- stack

▶ This does not eliminate the possibility of security vulnerabilities, but it
makes them harder to implement

Address space randomization

▶ For exploits which depend on knowing the current (approximate) stack
pointer value, the OS kernel can randomly choose where to place the
stack in memory

▶ Code and data in position-independent executables can be loaded into
memory at arbitrary addresses
▶ Exploits depending on a return address jumping to a specific instruction

become less likely to succeed
▶ Address space randomization techniques make exploits more difficult, but

don’t make them impossible

Detect stack smashing

▶ Compiler can generate code to detect improper
modification of stack memory:
▶ On procedure entry, store a “stack canary”

value near the return address
▶ Prior to return, check the canary value
▶ If canary was modified, terminate program

▶ Canary value generated randomly, cannot easily
be guessed

▶ Return address (in theory) can’t be overwritten
without also overwriting canary value

▶ Small runtime overhead incurred on
instrumented function calls

▶ Enabled by default in recent Linux/gcc

Not actually a canary

	Buffer overflows
	Mitigations for buffer overflows

