Lecture 13: Pipelining

Philipp Koehn

February 20, 2026

601.229 Computer Systems Fundamentals

=N

S il:,’

MIPS overview

MIIFPS

» Developed by MIPS Technologies in 1984, first product in 1986
» Used in
» Silicon Graphics (SGI) Unix workstations

» Digital Equipment Corporation (DEC) Unix workstation
» Nintendo 64

» Sony PlayStation
» Inspiration for ARM (esp. v8)

» 32 bit architecture (registers, memory addresses)
» 32 registers

» Multiply and divide instructions

» Floating point numbers

Example: Addition

» Mathematical view of addition
a=b+c

Example: Addition

» Mathematical view of addition

a=b+c
» MIPS instruction

add a,b,c

a, b, c are registers

32 Registers

» Some are special
0 $zero always has the value 0
31 $%ra contains return address

32 Registers

» Some are special
0 $zero always has the value 0
31 $%ra contains return address

» Some have usage conventions
1 $at reserved for pseudo-instructions

32 Registers

» Some are special
0 $zero always has the value 0
31 $%ra contains return address
» Some have usage conventions
1 $at reserved for pseudo-instructions
2-3 $v0-$v1 return values of a function call
4-7 $a0-$a3 arguments for a function call

32 Registers

» Some are special

0 $zero always has the value 0
31 $%ra contains return address

» Some have usage conventions

1 $at
2-3 $v0-$v1
4-7 $a0-%$a3

8-15,24,25 $t0-$t9
16-23 $s0-$s7

reserved for pseudo-instructions

return values of a function call

arguments for a function call

temporaries, can be overwritten by function
saved, have to be preserved by function

32 Registers

» Some are special

0 $zero
31 $%ra

always has the value 0
contains return address

» Some have usage conventions

1

2-3

4-7
8-15,24,25
16-23
26-27

28

29

30

$at
$v0-$v1
$a0-%a3
$t0-$t9
$s0-$s7
$k0-$k1
$ep
$sp
$fp

reserved for pseudo-instructions

return values of a function call

arguments for a function call

temporaries, can be overwritten by function
saved, have to be preserved by function
reserved for kernel

global area pointer

stack pointer

frame pointer

Pipelining

Laundry Analogy

6pm 7pm 8pm 9pm 10pm T1pm

Task A “ M
C100

Laundry Pipelined

6pm 7pm 8pm 9pm 10pm ipm

T

» Theoretical speed-up: 3 times
» Actual speed-up in example: 2 times

» sequential: 1:30+1:30+1:3041:30 = 6 hours
» pipelined: 1:304-0:30+0:30+4-0:30 = 3 hours

» Many tasks — speed-up approaches theoretical limit

MIPS instruction pipeline

MIPS Pipeline

» Fetch instruction from memory

» Read registers and decode instruction (note: registers are always encoded
in same place in instruction)

» Execute operation OR calculate an address
» Access an operand in memory
» Write result into a register

Time for Instructions

Breakdown for each type of instruction

Instruction Instr. Register ALU Data Register Total

class fetch read oper. access write time
Load word (lw) 200ps 100ps 200ps 200ps 100ps 800ps
Store word (sw) 200ps 100ps 200ps 200ps 700ps
R-format (add) 200ps 100ps 200ps 100ps 600ps

Brand (beq) 200ps 100ps 200ps 500ps

Pipeline Execution

200 400 600 800 1000 1200 1400 1600 1800
| | | | | | | | |
Instruction | Reg. Data Reg.
1w $el, 100(3%0) Fetch read ‘ Al ‘ access ‘write
1w $t2, 104($t0) Instruction | Reg. ALU Data Re_g.
Fetch read access | write

1 . Instruction
w $t3, 108($t0) Fetch

Pipeline Execution

200 400 600 800 1000 1200 1400 1600 1800
| | | | | | | | |
Instruction | Reg. Data Reg.
1w $el, 100(3%0) Fetch read ‘ Al ‘ access ‘write
1w $t2, 104($t0) Instruction | Reg. ALU Data Re_g.
Fetch read access | write

1 . Instruction
w $t3, 108($t0) Fetch

200 400 600 800 1000 1200 1400 1600 1800
| | | | | | | | |
Instruction Reg. Data Reg.
Tw $€1, 100(5t0) Fetch read (Y access | write
Instruction Reg. Data Reg.
T $E2, 104(5%0) Fetch read Al access | write
Instruction Reg. Data Reg.
1w 53, 108(5t0) Fetch read Al access ‘write

» Theoretical speed-up: 4 times
» Actual speed-up in example: 1.71 times

» sequential: 800ps + 800ps + 800ps = 2400ps
» pipelined: 1000ps + 200ps + 200ps = 1400ps

» Many tasks — speed-up approaches theoretical limit

Design for Pipelining

» All instructions are 4 bytes
— easy to fetch next instruction

Design for Pipelining

» All instructions are 4 bytes
— easy to fetch next instruction
» Few instruction formats
— parallel op decode and register read

Design for Pipelining

» All instructions are 4 bytes
— easy to fetch next instruction
» Few instruction formats
— parallel op decode and register read
» Memory access limited to load and store instructions
— stage 3 used for memory access, otherwise operation execution

Design for Pipelining

» All instructions are 4 bytes
— easy to fetch next instruction

» Few instruction formats

— parallel op decode and register read
» Memory access limited to load and store instructions

— stage 3 used for memory access, otherwise operation execution
» Words aligned in memory

— able to read in one instruction
(aligned = memory address multiple of 4)

Hazards

» Hazard = next instruction cannot be executed in next clock cycle
» Types
» structural hazard

» data hazard
» control hazard

Structural Hazard

» Definition: instructions overlap in resource use in same stage
» For instance: memory access conflict

1 2 3 4 5 6 7
il FETCH DECODE MEMORY MEMORY ALU REGISTER
i2 FETCH DECODE MEMORY MEMORY ALU REGISTER
conflict

» MIPS designed to avoid structural hazards

» Definition: instruction waits on result from prior instruction

» Example

add $s0, $t0, $t1
sub $t0, $s0, $t3

» add instruction writes result to register $s0 in stage 5
» sub instruction reads $s0 in stage 2

= Stage 2 of sub has to be delayed
» We overcome this in hardware

Graphical Representation

200 400 600 800 1000
| | | | L,

add $s0,S$t0,S$tl

IF ID E MEM WB

» |F: instruction fetch
» ID: instruction decode
» EX: execution

» MEM: memory access
» WB: write-back

Add and Subtract

200 400 600 800 1000
. | | | | .
add $s0,$t0,s$tl \
IF ID EX MEM WB

sub $t0,$s0,$t3

IF ID EX MEM WB

» Add wiring to circuit to directly connect
output of ALU for next instruction

L oad and Subtract

200 400 600 800 1000 1200
l l l l l l .

1w $s50,20($t0)

IF ID EX MEM WB

bubble bubble bubble bubble bubble

sub $t0,$s0,$t3

IF — ID EX MEM WB

» Add wiring from memory lookup to ALU
» Still 1 cycle unused: "pipeline stall" or "bubble"

Reorder Code

Code with data hazard

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Reorder Code

Code with data hazard Reorder code (may be done by compiler)

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Reorder Code

Code with data hazard Reorder code (may be done by compiler)
lw $t1, 0($t0) lw $t1, 0($t0)

lw $t2, 4($t0) lw $t2, 4($t0)

add $t3, $t1, $t2 lw $t4, 8($t0)

sw $t3, 12($t0) add $t3, $t1, $t2

lw $t4, 8($t0) sw $t3, 12($t0)

add $t5, $t1, $t4 add $t5, $t1, $t4

sw $t5, 16(5t0) sw $t5, 16($t0)

Load instruction now completed in time

Clicker quiz!

Clicker quiz omitted from public slides

Clicker quiz!

Clicker quiz omitted from public slides

Control Hazard

» Also called branch hazard
» Selection of next instruction depends on outcome of previous

» Example

add $s0, $t0, $t1
beq $s0, $s1, ff40
sub $t0, $s0, $t3

» sub instruction only executed if branch condition fails
— cannot start until branch condition result known

Branch Prediction

» Assume that branches are never taken
— full speed if correct
» More sophisticated

» keep record of branch taken or not
» make prediction based on history

Pipelined data path

Datapath

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:
Memory access

v
Selector

:

Address

Instruction
Memory

Instruction

\»| Read Read
register 1 data 1
Read
register 2

Registers
Write Read
register data 2
Write
data

Address
Read
data
Data
Memory
Write
data

WB:
Write Back

Pipelined Datapath

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

.

r data

\ »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read ||
register data 2
Write

£ Address

Read ||
data
Data
Memory
Write
data

WB:

Load

Load: Stage 1

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

>

r data

\ »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read ||
register data 2
Write

1[Address

Read ||
data
Data
Memory
Write
data

WB:

Load: Stage 2

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

>

r data

L »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read |
register data 2
Write

1[Address

Read ||
data
Data
Memory
Write
data

WB:

Load: Stage 3

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

.

r data

\ »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read |
register data 2
Write

1[Address

Read ||
data
Data
Memory
Write
data

WB:

Load: Stage 4

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

.

r data

\ »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read ||
register data 2
Write

E Address

Read |
data
Data
Memory
Write
data

WB:

Load: Stage 5

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

.

I_' data

| Read Read
register 1 data 1
] Read
register 2
Registers
| Write Read ||
register data 2
Write

1[Address

Read [,
data
Data
Memory
Write
data

WB:

Store

Store: Stage 1

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

>

r data

\ »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read ||
register data 2
Write

1[Address

Read ||
data
Data
Memory
Write
data

WB:

Store: Stage 2

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

>

r data

L »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read |
register data 2
Write

1[Address

Read ||
data
Data
Memory
Write
data

WB:

Store: Stage 3

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

.

r data

\ »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read |
register data 2
Write

1[Address

Read ||
data
Data
Memory
Write
data

WB:

Store: Stage 4

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

.

r data

\ »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read ||
register data 2
Write

1[Address

Read ||
data
Data
Memory
Write
data

WB:

Store: Stage 5

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

.

r data

\ »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read ||
register data 2
Write

£ Address

Read ||
data
Data
Memory
Write
data

WB:

Add

Add: Stage 1

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

>

r data

\ »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read ||
register data 2
Write

1[Address

Read ||
data
Data
Memory
Write
data

WB:

Add: Stage 2

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

>

r data

L »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read |
register data 2
Write

1[Address

Read ||
data
Data
Memory
Write
data

WB:

Add: Stage 3

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

.

r data

\ »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read |
register data 2
Write

1[Address

Read ||
data
Data
Memory
Write
data

WB:

Add: Stage 4

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

.

r data

\ »| Read Read
register 1 data 1
] Read
register 2
Registers
)| Write Read ||
register data 2
Write

1[Address

Read [,
data
Data
Memory
Write
data

WB:

Add: Stage 5

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

.

I_' data

| Read Read
register 1 data 1
] Read
register 2
Registers
| Write Read ||
register data 2
Write

1[Address

Read [,
data
Data
Memory
Write
data

WB:

Write to register

Which Register?

IF:

Instruction Fetch

ID: Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended

Address

Instruction
Memory

Instruction

.

I_' data

| Read Read
register 1 data 1
] Read
register 2
Registers
| Write Read ||
register data 2
Write

1[Address

Read [,
data
Data
Memory
Write
data

WB:

» Write register

» decoded in stage 2
» used in stage 5

» |dentity of register has to be passed along

IF:

Instruction Fetch

ID:

Data Path for Write Register

Instruction decoder
register file read

EX: Execute /
address calculate

MEM:
Memory access

Sign
extended

Address

Instruction
Memory

Instruction

bl Read Read |,
register 1 data 1
sl Read
register 2
Registers
- g > Write Read ||
register data 2
N Write
data

£ Address

Read ||
data
Data
Memory
Write
data

|
WB:

|
| Write Back

Pipelined control

Pipelined Control

» At each stage, information from instruction is needed

» which ALU operation to execute
» which memory address to consult
» which register to write to

» This control information has to be passed through stages

Pipelined Control

v
Control
v
<
\
<

\ 4

WB

\

WB

\ 4

WB—>

IF ID EX MEM WB

Control Flags

IF:

Instruction Fetch

ID:

Instruction decoder
register file read

EX: Execute /
address calculate

MEM:

Memory access | Write Back

Sign
extended
Register Write
Address | Read Read |,
register 1 data 1
Instruction . Read
Memory register 2
Registers
Instruction |, _¢ | Write Read ||
register data 2
N Write
data

Operation

ALU
Source

ADD
Shift
Left

Branch
(req.
add.

logic)

£ Address

Read
data
Data
Memory
Write

WB:

Memory
To
Register

	MIPS overview
	Pipelining
	MIPS instruction pipeline
	Hazards
	Pipelined data path
	Load
	Store
	Add
	Write to register
	Pipelined control

