
Lecture 16: Cache policies

Philipp Koehn

March 4, 2026

601.229 Computer Systems Fundamentals

Cache simulator data structure (suggestion)

struct Slot {
uint32_t tag;
bool valid, dirty;
uint32_t load_ts,

access_ts;
};

struct Set {
std::vector<Slot> slots;

};

struct Cache {
std::vector<Set> sets;

};

Elements (sets within cache, slots within set)
created in advance, not created/destroyed
dynamically

Avoid using a dynamic data structure (e,g., a
queue) to model replacement; instead, use
“timestamps” to represent when block was
loaded into slot, when it was last accessed

Sequential search to find valid block in set
with matching tag

Performance of common case of a hit within a
set can be improved by adding an “index” to
map tags to valid blocks:
std::map<uint32_t, Slot *> index;

Memory Tradeoff

▶ Fastest memory is on same chip as CPU
... but it is not very big (say, 32 KB in L1 cache)

▶ Slowest memory is DRAM on different chips
... but can be very large (say, 256GB in compute server)

▶ Goal: illusion that large memory is fast
▶ Idea: use small memory as cache for large memory
▶ Note: in reality there are additional levels of cache (L1, L2, L3)

Simplified View

Processor

Smaller memory mirrors some of
the large memory content

Cache organization

Previously: Direct Mapping

▶ Each memory block is mapped to a specific slot in cache
⇒ Use part of the address as index to cache

0010 0011 1101 1100 0001 0011 1010 1111
Tag Index Offset

▶ Since multiple memory blocks are mapped to same slot
→ contention, newly loaded blocks discard old ones

Concerns

▶ Is this the best we got?
▶ Some benefits from locality:

neighboring memory blocks placed in different cache slots
▶ But: we may have to pre-empt useful cached blocks
▶ We do not even know which ones are still useful

Now: Associative Cache

▶ Place block anywhere in cache
⇒ Block tag now full block address in main memory
▶ Previously: 32-bit memory address gets mapped to

0010 0011 1101 1100 0001 0011 1010 1111
Tag Index Offset

▶ Now
0010 0011 1101 1100 0001 0011 1010 1111

Tag Offset
⇓

Index

Cache Organization

▶ Cache sizes
▶ block size: 256 bytes (8 bit offset)
▶ cache size: 1MB (4096 slots)

Tag Valid Data
(24 bits) (1 bit) 256 bytes

0
1 xx xx xx xx xx xx xx xx
...

4095

▶ Read memory value for address $d0f01234
▶ cache miss → load into cache
▶ data block: $d0f01200-$d0f012ff
▶ tag: $d0f012
▶ placed somewhere (say, index 1)

. $d0f012 1 93 f4 8d 19

Cache Organization

▶ Cache sizes
▶ block size: 256 bytes (8 bit offset)
▶ cache size: 1MB (4096 slots)

Tag Valid Data
(24 bits) (1 bit) 256 bytes

0
1 xx xx xx xx xx xx xx xx
...

4095
▶ Read memory value for address $d0f01234
▶ cache miss → load into cache
▶ data block: $d0f01200-$d0f012ff
▶ tag: $d0f012
▶ placed somewhere (say, index 1)

. $d0f012 1 93 f4 8d 19

Trade-Off

▶ Direct mapping (slot determined from address)
▶ disadvantage: two useful blocks contend for same slot
→ many cache misses

▶ Associative (lookup table for slot)
▶ disadvantage: finding block in cache expensive
→ slow, power-hungry

⇒ Looking for a compromise

Set-Associative Cache

▶ Mix of direct and associative mapping
▶ From direct mapping:

use part of the address to determine a subset of cache
0010 0011 1101 11 00 0001 0011 1010 1111

Tag Index Offset
▶ Associative mapping:

more than one slot for each indexed part of cache

Cache Organization

▶ Cache sizes
▶ block size: 256 bytes (8 bit offset)
▶ cache size: 1MB (1024 sets of 4 slots)

Index Tag Valid Data
(14 bits) (1 bit) 256 bytes

0
xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx xx

1
xx xx xx xx xx xx xx xx

...

Clicker quiz!

Clicker quiz omitted from public slides

Cache Read Control (4-Way Set Associative)

Tag Index Offset

Tag Valid

Decoder

DataTag Valid

=

AND

Select

Main
Memory

CPU

Data Tag Valid

DataTag Valid

=

AND

Data Tag Valid

DataTag Valid

=

AND

Data Tag Valid

DataTag Valid

=

AND

Data

Select
OR

Hit Control

Data Path

Caching Strategies

▶ Read in blocks as needed
▶ If cache full, discard blocks based on
▶ randomly

▶ number of times accessed
▶ least recently used
▶ first in, first out

Caching Strategies

▶ Read in blocks as needed
▶ If cache full, discard blocks based on
▶ randomly
▶ number of times accessed

▶ least recently used
▶ first in, first out

Caching Strategies

▶ Read in blocks as needed
▶ If cache full, discard blocks based on
▶ randomly
▶ number of times accessed
▶ least recently used

▶ first in, first out

Caching Strategies

▶ Read in blocks as needed
▶ If cache full, discard blocks based on
▶ randomly
▶ number of times accessed
▶ least recently used
▶ first in, first out

First in, first out

First In, First Out (FIFO)

▶ Consider order in which cache blocks loaded
▶ Oldest block gets discarded first
⇒ Need to keep a record of when blocks were loaded

Timestamp

▶ Each record requires additional timestamp
Index Tag Valid Timestamp Data

(14 bits) (1 bit) 256 bytes
0

xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx xx
xx xx xx xx xx xx xx xx

1
xx xx xx xx xx xx xx xx

...
▶ Store actual time?
▶ time can be easily set when slot filled
▶ but: finding oldest slot requires loop with min calculation

Maintain Order

▶ Actual access time not needed, but ordering of cache
▶ For instance, for 4-way associative array
▶ 0 = newest block
▶ 3 = oldest block

▶ When new slot needed
▶ find slot with timestamp value 3
▶ use slot for new memory block
▶ increase all timestamp counters by 1

Example

▶ Initial
Index Tag Valid Order Data

(14 bits) (1 bit) 256 bytes
0 0

0 xx xx xx xx xx xx xx xx
0 xx xx xx xx xx xx xx xx
0 xx xx xx xx xx xx xx xx

Example

▶ First block
Index Tag Valid Order Data

(14 bits) (1 bit) 256 bytes
0 3e12 0 11 4f 4e 53 ff 00 01

0 10 xx xx xx xx xx xx xx xx
0 01 xx xx xx xx xx xx xx xx
0 00 xx xx xx xx xx xx xx xx

▶ All valid bits are 0
▶ Each slot has unique order value

Example

▶ Second block
Index Tag Valid Order Data

(14 bits) (1 bit) 256 bytes
0 3e12 1 01 4f 4e 53 ff 00 01

0ff0 1 00 00 01 f0 01 02 63
0 11 xx xx xx xx xx xx xx xx
0 10 xx xx xx xx xx xx xx xx

▶ Load data
▶ Set valid bit
▶ Increase order counters

Example

▶ Third block
Index Tag Valid Order Data

(14 bits) (1 bit) 256 bytes
0 3e12 1 10 4f 4e 53 ff 00 01

0ff0 1 01 00 01 f0 01 02 63
6043 1 00 f0 f0 f0 34 12 60

0 11 xx xx xx xx xx xx xx xx

▶ Load data
▶ Set valid bit
▶ Increase order counters

Example

▶ Fourth block
Index Tag Valid Order Data

(14 bits) (1 bit) 256 bytes
0 3e12 1 11 4f 4e 53 ff 00 01

0ff0 1 10 00 01 f0 01 02 63
2043 1 01 f0 f0 f0 34 12 60
37ab 1 00 4a 42 43 52 4a 4a

▶ Load data
▶ Set valid bit
▶ Increase order counters

Example

▶ Fifth block
Index Tag Valid Order Data

(14 bits) (1 bit) 256 bytes
0 0561 1 00 9a 8b 7d 3d 4a 44

0ff0 1 11 00 01 f0 01 02 63
2043 1 10 f0 f0 f0 34 12 60
37ab 1 01 4a 42 43 52 4a 4a

▶ Discard oldest block
▶ Load new data
▶ Increase order counters

Least recently used

Least Recently Used (LRU)

▶ Base decision on last-used time, not load time
▶ Keeps frequently used blocks longer in cache
▶ Also need to maintain order
⇒ Update with every access (not just miss)

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

01 11 10 00

01 11 10 Hit 00
10 Hit 00 11 01

Hit 00 01 11 10
01 10 Miss 00 11

▶ Miss: set to 0 and increase other counters
▶ Hit least recently used: set to 0 and increase other counters
▶ Hit most recently used: no change
▶ Hit others: increase some counters

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

01 11 10 00
01 11 10 Hit 00

10 Hit 00 11 01
Hit 00 01 11 10

01 10 Miss 00 11

▶ Miss: set to 0 and increase other counters
▶ Hit least recently used: set to 0 and increase other counters
▶ Hit most recently used: no change
▶ Hit others: increase some counters

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

01 11 10 00
01 11 10 Hit 00
10 Hit 00 11 01

Hit 00 01 11 10
01 10 Miss 00 11

▶ Miss: set to 0 and increase other counters
▶ Hit least recently used: set to 0 and increase other counters
▶ Hit most recently used: no change
▶ Hit others: increase some counters

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

01 11 10 00
01 11 10 Hit 00
10 Hit 00 11 01

Hit 00 01 11 10

01 10 Miss 00 11

▶ Miss: set to 0 and increase other counters
▶ Hit least recently used: set to 0 and increase other counters
▶ Hit most recently used: no change
▶ Hit others: increase some counters

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

01 11 10 00
01 11 10 Hit 00
10 Hit 00 11 01

Hit 00 01 11 10
01 10 Miss 00 11

▶ Miss: set to 0 and increase other counters
▶ Hit least recently used: set to 0 and increase other counters
▶ Hit most recently used: no change
▶ Hit others: increase some counters

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

01 11 10 00
01 11 10 Hit 00
10 Hit 00 11 01

Hit 00 01 11 10
01 10 Miss 00 11

▶ Miss: set to 0 and increase other counters
▶ Hit least recently used: set to 0 and increase other counters
▶ Hit most recently used: no change
▶ Hit others: increase some counters

Quite Complicated

▶ First look up order of accessed block
▶ Compare each other block’s order to that value
▶ Increasingly costly with higher associativity
▶ Note: this has to be done every time memory is accessed

(not just during cache misses)

Aproximation: Bit Shifting

▶ Keep an (n-1)-bit map for an n-way associative set
▶ Each time a block in a set is accessed
▶ shift all bits to the right
▶ set the highest bit of the accessed block

▶ Slot with value 0 is candidate for removal

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

010 000 001 100

001 Hit 100 000 010
000 010 Miss 100 001
000 Hit 101 010 000
000 Hit 110 001 000

Miss 100 011 000 000

▶ There may be multiple blocks with order pattern 000
→ pick one randomly

▶ Maybe do not change, if most recently used block is used again

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

010 000 001 100
001 Hit 100 000 010

000 010 Miss 100 001
000 Hit 101 010 000
000 Hit 110 001 000

Miss 100 011 000 000

▶ There may be multiple blocks with order pattern 000
→ pick one randomly

▶ Maybe do not change, if most recently used block is used again

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

010 000 001 100
001 Hit 100 000 010
000 010 Miss 100 001

000 Hit 101 010 000
000 Hit 110 001 000

Miss 100 011 000 000

▶ There may be multiple blocks with order pattern 000
→ pick one randomly

▶ Maybe do not change, if most recently used block is used again

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

010 000 001 100
001 Hit 100 000 010
000 010 Miss 100 001
000 Hit 101 010 000

000 Hit 110 001 000
Miss 100 011 000 000

▶ There may be multiple blocks with order pattern 000
→ pick one randomly

▶ Maybe do not change, if most recently used block is used again

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

010 000 001 100
001 Hit 100 000 010
000 010 Miss 100 001
000 Hit 101 010 000
000 Hit 110 001 000

Miss 100 011 000 000

▶ There may be multiple blocks with order pattern 000
→ pick one randomly

▶ Maybe do not change, if most recently used block is used again

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

010 000 001 100
001 Hit 100 000 010
000 010 Miss 100 001
000 Hit 101 010 000
000 Hit 110 001 000

Miss 100 011 000 000

▶ There may be multiple blocks with order pattern 000
→ pick one randomly

▶ Maybe do not change, if most recently used block is used again

Example

Slot 0 Slot 1 Slot 2 Slot 3
Access Order Access Order Access Order Access Order

010 000 001 100
001 Hit 100 000 010
000 010 Miss 100 001
000 Hit 101 010 000
000 Hit 110 001 000

Miss 100 011 000 000

▶ There may be multiple blocks with order pattern 000
→ pick one randomly

▶ Maybe do not change, if most recently used block is used again

	Cache organization
	First in, first out
	Least recently used

