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Control Flow

▶ The CPU executes one instruction after another
▶ Typically, they are next to each other in memory (unless jumps, branches,

and returns from subroutine)
▶ Exceptional Control Flow, triggered by
▶ hardware exception
▶ software exception



Exceptions

▶ Interrupts
▶ signal from I/O device
▶ also: timer interrupts for multi-tasking

▶ Traps and system calls
▶ intentional
▶ triggered by instruction ("syscall")

▶ Faults
▶ maybe recoverable, e.g., swapped out memory ("page fault")
▶ if recovered, return to regular control flow

▶ Aborts
▶ unrecoverable fatal error, e.g., memory corrupted
▶ application process is terminated
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Abrupt Change in Control Flow
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Processes



Process

▶ Exceptions are the basic building block for processes
▶ Modern computers seem to run several things at once
▶ retrieve and display web pages
▶ play music in the background
▶ accept emails and alert you to them

▶ Process = a running program
▶ appears to have full access to memory
▶ appears to run without interruptions

▶ Multi-tasking: modern OS that allow multiple processes at once
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Logical Control Flow
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User and Kernel Mode

▶ Mode bit in control register
▶ Kernel mode: may execute any instruction, access any memory
▶ User mode: limited to private memory
▶ Switch from user to kernel mode
▶ voluntary (sleep)
▶ triggered by interrupt
▶ system call



Private Address Space

Kernel memory

User stack

Memory-mapped region 
for shared libraries

Run time heap (created by 
malloc)

Read/write segment 
(.data / .bss)

Read-only code segment 
(.init, .text., .rodata)
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Loaded from
executable
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400000

ffffffff



Process Context

▶ Kernel maintains context for each process
▶ Context
▶ program counter
▶ register values
▶ address table (more on that soon)
▶ opened files
▶ various meta information (e.g., process name)

▶ In Linux, each process context viewable in /proc "file" system



Context Switches
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System calls



Examples

Number Name Description
0 read read from file
1 write write to file
2 open open file
3 close close file
33 pause suspend process until signal arrives
39 getpid get process id
57 fork create new process
60 exit end process
61 wait4 wait for a process to terminate
62 kill kill another process



Assembly Example

.section .data
string:

.ascii "hello, world!\n"
string_end:

.equ len, string_end - string

.section .text

.globl main
main:

movq $1, %rax ; write is system call 1
movq $1, %rdi ; arg1: stdout is "file" 1
movq string, %rsi ; arg2: hello world string
movq len, %rdx ; arg3: length of string
syscall

movq $60, %rax ; exit is system call 60
movq $0, %rdi ; exit status
syscall



System Call Control

syscall
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execute
instructions

control passes to kernel
syscall
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to next instruction,
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Clicker Quiz

Clicker quiz omitted from public slides



Process control



Creating New Processes

▶ C code than spawns a child process
int main() {

int x = 1;
pid_t pid = fork();

if (pid == 0) {
printf("child x=%d", ++x);
exit(0);

}
printf("parent x=%d", --x);
exit(0);

}

▶ When run, it returns
parent x=0
child x=2



Syscall 57: Fork

▶ fork() creates a child process
▶ Call once, return twice
▶ in child process: return value 0
▶ in parent process: return value is process id of child

▶ Concurrent execution
▶ parent and child processes run concurrently
▶ no guarantee which proceeds first (and for how long)

▶ Duplicate by separate address space
▶ initially memory is identical
▶ each process makes changes to its private copy
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Another Example

▶ Multiple forks
int main() {

fork();
fork();
printf("hello\n");
exit(0);

}

▶ Outputs "hello" 4 times
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Death in the Family

▶ What happens when what dies when?
▶ Child process dies
▶ process still in kernel’s process table
▶ waiting for parent to read exit status
▶ "zombie": dead, but still active

▶ Parent process dies
▶ children processes become orphaned
▶ orphan killing: terminate all orphaned processes
▶ re-parenting: make init process (pid: 1) parent

(→ a "daemon" process)



Waiting for Child to Die

1. Parent spawns child process
2. Both processes running
3. Parent waits for child to complete
▶ C: waitpid()
▶ Assembly: syscall 61

4. Parent stalls
5. Child dies (zombie)
6. Parent receives exit status of child
7. Child dies completely



Exec

▶ Parent process may execute another program
▶ C: execve(filename, argv, envp)
▶ Assembly: syscall 59

▶ Passes environment variables (envp)
▶ Executed command takes over
▶ If both should run: fork first
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