
Lecture 20: Process Control

Philipp Koehn

March 13, 2026

601.229 Computer Systems Fundamentals

Control Flow

▶ The CPU executes one instruction after another
▶ Typically, they are next to each other in memory (unless jumps, branches,

and returns from subroutine)
▶ Exceptional Control Flow, triggered by
▶ hardware exception
▶ software exception

Exceptions

▶ Interrupts
▶ signal from I/O device
▶ also: timer interrupts for multi-tasking

▶ Traps and system calls
▶ intentional
▶ triggered by instruction ("syscall")

▶ Faults
▶ maybe recoverable, e.g., swapped out memory ("page fault")
▶ if recovered, return to regular control flow

▶ Aborts
▶ unrecoverable fatal error, e.g., memory corrupted
▶ application process is terminated

Exceptions

▶ Interrupts
▶ signal from I/O device
▶ also: timer interrupts for multi-tasking

▶ Traps and system calls
▶ intentional
▶ triggered by instruction ("syscall")

▶ Faults
▶ maybe recoverable, e.g., swapped out memory ("page fault")
▶ if recovered, return to regular control flow

▶ Aborts
▶ unrecoverable fatal error, e.g., memory corrupted
▶ application process is terminated

Exceptions

▶ Interrupts
▶ signal from I/O device
▶ also: timer interrupts for multi-tasking

▶ Traps and system calls
▶ intentional
▶ triggered by instruction ("syscall")

▶ Faults
▶ maybe recoverable, e.g., swapped out memory ("page fault")
▶ if recovered, return to regular control flow

▶ Aborts
▶ unrecoverable fatal error, e.g., memory corrupted
▶ application process is terminated

Exceptions

▶ Interrupts
▶ signal from I/O device
▶ also: timer interrupts for multi-tasking

▶ Traps and system calls
▶ intentional
▶ triggered by instruction ("syscall")

▶ Faults
▶ maybe recoverable, e.g., swapped out memory ("page fault")
▶ if recovered, return to regular control flow

▶ Aborts
▶ unrecoverable fatal error, e.g., memory corrupted
▶ application process is terminated

Abrupt Change in Control Flow

current
next

execute
instructions interrupt,

finish current instruction,
 control passes to kernel

interrupt
handler

 handler returns
to next instruction

Processes

Process

▶ Exceptions are the basic building block for processes
▶ Modern computers seem to run several things at once
▶ retrieve and display web pages
▶ play music in the background
▶ accept emails and alert you to them

▶ Process = a running program
▶ appears to have full access to memory
▶ appears to run without interruptions

▶ Multi-tasking: modern OS that allow multiple processes at once

Process

▶ Exceptions are the basic building block for processes
▶ Modern computers seem to run several things at once
▶ retrieve and display web pages
▶ play music in the background
▶ accept emails and alert you to them

▶ Process = a running program
▶ appears to have full access to memory
▶ appears to run without interruptions

▶ Multi-tasking: modern OS that allow multiple processes at once

Process

▶ Exceptions are the basic building block for processes
▶ Modern computers seem to run several things at once
▶ retrieve and display web pages
▶ play music in the background
▶ accept emails and alert you to them

▶ Process = a running program
▶ appears to have full access to memory
▶ appears to run without interruptions

▶ Multi-tasking: modern OS that allow multiple processes at once

Logical Control Flow

tim
e

Process A Process B Process C

User and Kernel Mode

▶ Mode bit in control register
▶ Kernel mode: may execute any instruction, access any memory
▶ User mode: limited to private memory
▶ Switch from user to kernel mode
▶ voluntary (sleep)
▶ triggered by interrupt
▶ system call

Private Address Space

Kernel memory

User stack

Memory-mapped region
for shared libraries

Run time heap (created by
malloc)

Read/write segment
(.data / .bss)

Read-only code segment
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff

Process Context

▶ Kernel maintains context for each process
▶ Context
▶ program counter
▶ register values
▶ address table (more on that soon)
▶ opened files
▶ various meta information (e.g., process name)

▶ In Linux, each process context viewable in /proc "file" system

Context Switches

tim
e

Process A Process B Process C

user
kernel

user

kernel
user

kernel

user

System calls

Examples

Number Name Description
0 read read from file
1 write write to file
2 open open file
3 close close file
33 pause suspend process until signal arrives
39 getpid get process id
57 fork create new process
60 exit end process
61 wait4 wait for a process to terminate
62 kill kill another process

Assembly Example

.section .data
string:

.ascii "hello, world!\n"
string_end:

.equ len, string_end - string

.section .text

.globl main
main:

movq $1, %rax ; write is system call 1
movq $1, %rdi ; arg1: stdout is "file" 1
movq string, %rsi ; arg2: hello world string
movq len, %rdx ; arg3: length of string
syscall

movq $60, %rax ; exit is system call 60
movq $0, %rdi ; exit status
syscall

System Call Control

syscall
next

execute
instructions

control passes to kernel
syscall
handler

runs handler returns
to next instruction,

provides return values

Clicker Quiz

Clicker quiz omitted from public slides

Process control

Creating New Processes

▶ C code than spawns a child process
int main() {

int x = 1;
pid_t pid = fork();

if (pid == 0) {
printf("child x=%d", ++x);
exit(0);

}
printf("parent x=%d", --x);
exit(0);

}

▶ When run, it returns
parent x=0
child x=2

Syscall 57: Fork

▶ fork() creates a child process
▶ Call once, return twice
▶ in child process: return value 0
▶ in parent process: return value is process id of child

▶ Concurrent execution
▶ parent and child processes run concurrently
▶ no guarantee which proceeds first (and for how long)

▶ Duplicate by separate address space
▶ initially memory is identical
▶ each process makes changes to its private copy

Syscall 57: Fork

▶ fork() creates a child process
▶ Call once, return twice
▶ in child process: return value 0
▶ in parent process: return value is process id of child

▶ Concurrent execution
▶ parent and child processes run concurrently
▶ no guarantee which proceeds first (and for how long)

▶ Duplicate by separate address space
▶ initially memory is identical
▶ each process makes changes to its private copy

Syscall 57: Fork

▶ fork() creates a child process
▶ Call once, return twice
▶ in child process: return value 0
▶ in parent process: return value is process id of child

▶ Concurrent execution
▶ parent and child processes run concurrently
▶ no guarantee which proceeds first (and for how long)

▶ Duplicate by separate address space
▶ initially memory is identical
▶ each process makes changes to its private copy

Another Example

▶ Multiple forks
int main() {

fork();
fork();
printf("hello\n");
exit(0);

}

▶ Outputs "hello" 4 times

printf

printf

printf

printf

fork

forkfork exit

exit

exit

exit

main

Another Example

▶ Multiple forks
int main() {

fork();
fork();
printf("hello\n");
exit(0);

}

▶ Outputs "hello" 4 times

printf

printf

printf

printf

fork

forkfork exit

exit

exit

exit

main

Death in the Family

▶ What happens when what dies when?
▶ Child process dies
▶ process still in kernel’s process table
▶ waiting for parent to read exit status
▶ "zombie": dead, but still active

▶ Parent process dies
▶ children processes become orphaned
▶ orphan killing: terminate all orphaned processes
▶ re-parenting: make init process (pid: 1) parent

(→ a "daemon" process)

Waiting for Child to Die

1. Parent spawns child process
2. Both processes running
3. Parent waits for child to complete
▶ C: waitpid()
▶ Assembly: syscall 61

4. Parent stalls
5. Child dies (zombie)
6. Parent receives exit status of child
7. Child dies completely

Exec

▶ Parent process may execute another program
▶ C: execve(filename, argv, envp)
▶ Assembly: syscall 59

▶ Passes environment variables (envp)
▶ Executed command takes over
▶ If both should run: fork first

	Processes
	System calls
	Process control

