
Lecture 21: Signals

Philipp Koehn, David Hovemeyer

March 23, 2026

601.229 Computer Systems Fundamentals



Example code

Example code for today is on course website in signals.zip



Signals



Signals

▶ Software-level communication between processes
▶ Sending the signal from one process
▶ Receiving the signal by another process
▶ ignore
▶ terminate
▶ catch signal

▶ Handled by kernel



Examples

Number Name Default Corresponding Event
1 SIGHUP terminate terminal line hangup
2 SIGINT terminate interrupt from keyboard
3 SIGQUIT terminate quit from keyboard
4 SIGILL terminate illegal instruction
5 SIGTRAP terminate & dump core trace trap
9 SIGKILL terminate* kill process
18 SIGCONT ignore continue process if stopped
19 SIGSTOP stop until SIGCONT* stop signal not from terminal
20 SIGTSTP stop until SIGCONT stop signal from terminal

* = SIGKILL and SIGSTOP cannot be caught



Sending Signals

▶ From shell with command
$ /bin/kill -9 2423

▶ From shell with keystroke to running process
$ start-my-process
CTRL+C
▶ CTRL+C: sends SIGINT
▶ CTRL+Z: sends SIGTSTP

▶ There is also a C function and an Assembly syscall



Receiving Signals

▶ When kernel about to continue process, checks for signals
▶ If there is a signal, forces process to receive signal
▶ Each signal has a default action
▶ ignore
▶ terminate
▶ terminate and dump core
▶ stop

▶ Process can also set up a signal handler for customized response



Signal Handler

▶ Signal handler in C
#include "csapp.h"

void sigint_handler(int sig) {
printf("Caught SIGINT\n");
exit(0);

}

int main() {
signal(SIGINT, sigint_handler);
pause();
return 0;

}
▶ Now, process writes "Caught SIGINT" to stdout before terminating



Signal delivery, signal masks



Signal delivery

▶ In general, the OS kernel could deliver a signal to a process at any time
▶ Delivering a signal:
▶ Pushing a special return address of code to restore the CPU state (so

that process can continue normal execution when signal handler returns)
▶ Creating stack frame for signal handler
▶ Setting argument registers for signal handler
▶ Jumping to signal handler

▶ Signals are normally delivered on the process’s call stack
▶ Really a thread’s call stack, more about threads later on

▶ Process may designate a special area of memory to serve as a stack for
received signals



Signals and asynchrony

▶ Signal delivery could occur before or after any instruction
▶ That means that signals are asynchronous
▶ “Asynchronous” means “could happen at any time” or “ordering is

unpredictable”
▶ Signal handlers are asynchronous with respect to the rest of the program
▶ This can cause strange behavior!



A C program

#include "csapp.h"

#define NCOUNT 100000000
volatile int count = 0;

int main(void) {
// count up
for (int i = 0; i < NCOUNT; i++) { count++; }
printf("count=%d\n", count);
return 0;

}

Note that “volatile” tells the compiler not to optimize away accesses to the
count variable



Compiling and executing the program

$ gcc -O -Wall -c count.c
$ gcc -o count count.o
$ ./count
count=100000000

Nothing surprising happened



Interval timers

▶ An interval timer is a means for notifying the process than an interval of
time has elapsed

▶ Can be “one shot” or repeating
▶ The setitimer system call allows the process to create an interval timer
▶ When the timer elapses, OS kernel sends SIGALRM signal to process
▶ Let’s change the program so that the handler for SIGALRM is also

incrementing the global counter



Modified version of program
#include "csapp.h"

#define NCOUNT 100000000
volatile int stop = 0, nsigs = 0, count = 0;

void sigalrm_handler(int signo) {
if (!stop) { nsigs++; count++; }

}

int main(void) {
// handle SIGALRM signal
code to set up signal handler for SIGALRM

// arrange for SIGALRM to be delivered once every millisecond
code to set up interval timer

// count up
for (int i = 0; i < NCOUNT; i++) { count++; }
code to check final counts

return 0;
}



Code to set up signal handler

// code to set up signal handler for SIGALRM
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sa.sa_handler = sigalrm_handler;
sigaction(SIGALRM, &sa, NULL);

Note that to install a signal handler, sigaction is recommended over
signal, for reasons we’ll discuss soon



Using setitimer

// code to set up interval timer
struct itimerval itv;
itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 1000; // 1000 microseconds = 1 millisecond
itv.it_value = itv.it_interval;
setitimer(ITIMER_REAL, &itv, NULL);

ITIMER_REAL means that the intervals are “real time” (not relative to CPU
time used by the process)



Does the final count make sense?

// code to check final counts
stop = 1; // tell signal handler to stop incrementing count and nsigs
sleep(1); // wait a bit

printf("count=%d, NCOUNT=%d, nsigs=%d\n", count, NCOUNT, nsigs);
if (count == NCOUNT + nsigs) { printf(" count makes sense\n"); }
else { printf(" anomaly detected!\n"); }

In theory, the final value of count should be NCOUNT + nsigs
▶ NCOUNT is the number of increments (to count) in main
▶ nsigs is the number of calls to the signal handler (which also increments

count)



Running the modified program

$ gcc -O -Wall -c alarm1.c
$ gcc -o alarm1 alarm1.o
$ ./alarm1
count=100000028, NCOUNT=100000000, nsigs=174

anomaly detected!

What just happened?



Asynchrony and atomicity

▶ When a program
▶ has code paths which execute asynchronously, and
▶ the asynchronous paths update shared data
then anomalous behavior can be observed if either process executes code
which is not atomic

▶ “Atomic” means “happens in its entirety, or not at all”
▶ Incrementing a variable is not (necessarily) atomic



Why increment is not atomic

▶ The statement count++; really means
1: tmp = count;
2: tmp = tmp + 1;
3: count = tmp;

where tmp is a register
▶ If count is updated by code executing asynchronously, the updated value

could be overwritten by step 3
▶ The anomaly in our program execution shows this happening (the final

value of count doesn’t reflect all of the increments)



Clicker quiz!

Clicker quiz omitted from public slides



Synchronization, signal masks

▶ “Synchronization” means coordinating asynchronous accesses to shared
data to avoid anomalous results

▶ For programs using signals we can use signal masks to synchronize signal
handlers with the main program

▶ Signal mask = set of signals that are temporarily blocked
▶ OS kernel will only deliver a signal if it isn’t blocked
▶ Note that not all signals may be blocked
▶ For our example program, we can block SIGALRM to avoid the signal

handler from executing at the wrong time



Modified main loop

sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGALRM);

// count up
for (int i = 0; i < NCOUNT; i++) {

sigprocmask(SIG_BLOCK, &mask, NULL);
count++;
sigprocmask(SIG_UNBLOCK, &mask, NULL);

}



Running the modified program

$ gcc -O -Wall -c alarm2.c
$ gcc -o alarm2 alarm2.o
$ ./alarm2
count=100070462, NCOUNT=100000000, nsigs=70462

count makes sense

No anomaly! However, note that the program took a very long time to run
(more than 70 seconds) due to the overhead of calling sigprocmask in the
main loop.



signal vs. sigaction

▶ Historically, the signal system call was used to register a signal handler
on Unix systems

▶ New code should use sigaction
▶ Why?
▶ Handlers registered using signal may get “unregistered” when the

signal arrives
▶ signal doesn’t provide any mechanism for preventing signal handlers

from being interrupted by other signals


	Signals
	Signal delivery, signal masks

