
Lecture 22: Virtual Memory

Philipp Koehn

March 25, 2026

601.229 Computer Systems Fundamentals



Recall: Process Address Space

Kernel memory

User stack

Memory-mapped region 
for shared libraries

Run time heap (created by 
malloc)

Read/write segment 
(.data / .bss)

Read-only code segment 
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff



Virtual Memory

▶ Abstraction of physical memory
▶ Purpose
▶ appearance of more available memory than physically exists (DRAM)
▶ handles disk caching / loading
▶ insulates memory of each process

▶ Page table: maps from virtual address to physical addresses
▶ Memory management unit (MMU):

hardware implementation of address translation



Virtual Memory

▶ Abstraction of physical memory
▶ Purpose
▶ appearance of more available memory than physically exists (DRAM)
▶ handles disk caching / loading
▶ insulates memory of each process

▶ Page table: maps from virtual address to physical addresses

▶ Memory management unit (MMU):
hardware implementation of address translation



Virtual Memory

▶ Abstraction of physical memory
▶ Purpose
▶ appearance of more available memory than physically exists (DRAM)
▶ handles disk caching / loading
▶ insulates memory of each process

▶ Page table: maps from virtual address to physical addresses
▶ Memory management unit (MMU):

hardware implementation of address translation



Warning

▶ This is going to get very complex
▶ Closely tied with multi-tasking (multiple processes)
▶ Partly managed by hardware, partly managed by software



Virtual addressing



Physical Addressing

CPU

…

0:
1:
2:
3:
4:
5:
6:
7:

Physical address (PA)

Main memory

Data

CPU chip

▶ So far, assumed CPU addresses physical memory



Virtual Addressing

CPU MMU

…

0:
1:
2:
3:
4:
5:
6:
7:

Address
translation

Virtual
address

(VA)

Physical
address

(PA)

CPU chip Main memory

Data

▶ Memory management unit (MMU): maps virtual to physical addresses



Address Space

▶ Virtual memory size: N = 2n bytes, e.g., 256TB
▶ Physical memory size: M = 2m bytes, e.g., 16GB
▶ Page (block of memory): P = 2p bytes, e.g., 4KB
▶ A virtual address can be encoded in n bits



Caching



Caching... Again?

▶ Yes, we already discussed caching, but for on-chip cache of DRAM
memory

▶ Now
▶ caching between RAM and disk
▶ driven by a large virtual memory address space
▶ to avoid unnecessary and duplicate loading

▶ Jargon
▶ previously “block”, now “page”
▶ now: “swapping” or “paging”



Mapping

empty
empty

empty

empty
empty

Physical memory

unallocated
cached

uncached
cached

unallocated
uncached

cached
unallocated
unallocated

unallocated

…

0:
1:
2:
3:
4:
5:
6:
7:

Virtual memory

8:

15:

Virtual pages (VP)
stored on disk

Physical pages (PP)
cached in DRAM



State of Virtual Memory Page

▶ Cached
▶ allocated page
▶ stored in physical memory

▶ Uncached
▶ allocated page
▶ not in physical memory

▶ Unallocated
▶ not used by virtual memory system so far



State of Virtual Memory Page

▶ Cached
▶ allocated page
▶ stored in physical memory

▶ Uncached
▶ allocated page
▶ not in physical memory

▶ Unallocated
▶ not used by virtual memory system so far



State of Virtual Memory Page

▶ Cached
▶ allocated page
▶ stored in physical memory

▶ Uncached
▶ allocated page
▶ not in physical memory

▶ Unallocated
▶ not used by virtual memory system so far



Page Table

▶ Array of page table entries (PTE)

(actually, a tree where the leaves store the page table entries)
▶ Each PTE maps a virtual page to a physical page
▶ Valid bit
▶ set if PTE currently maps to physical address (cached)
▶ not set otherwise (uncached or unallocated)

▶ Mapped address
▶ if cached: physical address in DRAM
▶ if not cached: physical address on disk



Page Table

▶ Array of page table entries (PTE)
(actually, a tree where the leaves store the page table entries)

▶ Each PTE maps a virtual page to a physical page
▶ Valid bit
▶ set if PTE currently maps to physical address (cached)
▶ not set otherwise (uncached or unallocated)

▶ Mapped address
▶ if cached: physical address in DRAM
▶ if not cached: physical address on disk



Page Table

▶ Array of page table entries (PTE)
(actually, a tree where the leaves store the page table entries)

▶ Each PTE maps a virtual page to a physical page

▶ Valid bit
▶ set if PTE currently maps to physical address (cached)
▶ not set otherwise (uncached or unallocated)

▶ Mapped address
▶ if cached: physical address in DRAM
▶ if not cached: physical address on disk



Page Table

▶ Array of page table entries (PTE)
(actually, a tree where the leaves store the page table entries)

▶ Each PTE maps a virtual page to a physical page
▶ Valid bit
▶ set if PTE currently maps to physical address (cached)
▶ not set otherwise (uncached or unallocated)

▶ Mapped address
▶ if cached: physical address in DRAM
▶ if not cached: physical address on disk



Page Table

▶ Array of page table entries (PTE)
(actually, a tree where the leaves store the page table entries)

▶ Each PTE maps a virtual page to a physical page
▶ Valid bit
▶ set if PTE currently maps to physical address (cached)
▶ not set otherwise (uncached or unallocated)

▶ Mapped address
▶ if cached: physical address in DRAM
▶ if not cached: physical address on disk



Page Table

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address



Page Hit

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address



Page Fault

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

▶ Valid bit = 0
▶ Page not in RAM



Page Fault

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

▶ Page is on disk



Page Fault

VP1

VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

▶ Make space in RAM
▶ Pre-empt "victim" page
▶ Typically out-dated cached page



Page Fault

VP1
VP2
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

▶ Load page into RAM



Page Fault

VP1
VP2
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
1
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

▶ Update page table entry



Allocating Pages

▶ What happens when we load a program?
▶ We need to load its executable into memory
▶ Similar: create data objects when program is running

(“allocating” memory)



Allocating Page

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

▶ Identify space in virtual memory



Allocating Page

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

▶ Map to data on disk
▶ do not actual load
▶ just create page table entries
▶ let virtual memory system handle

loading
⇒ On-demand loading



Clicker quiz!

Clicker quiz omitted from public slides



Process Memory

▶ Nothing loaded at startup

▶ Working set (or resident set)
▶ pages of a process that are currently in DRAM
▶ loaded by virtual memory system on demand

▶ Thrashing
▶ memory actively required by all processes

larger than physically available
▶ frequent swapping of memory to/from disk
▶ very bad: slows down machine dramatically



Process Memory

▶ Nothing loaded at startup
▶ Working set (or resident set)
▶ pages of a process that are currently in DRAM
▶ loaded by virtual memory system on demand

▶ Thrashing
▶ memory actively required by all processes

larger than physically available
▶ frequent swapping of memory to/from disk
▶ very bad: slows down machine dramatically



Process Memory

▶ Nothing loaded at startup
▶ Working set (or resident set)
▶ pages of a process that are currently in DRAM
▶ loaded by virtual memory system on demand

▶ Thrashing
▶ memory actively required by all processes

larger than physically available
▶ frequent swapping of memory to/from disk
▶ very bad: slows down machine dramatically


	Virtual addressing
	Caching

