Lecture 23: Virtual Memory Il

Philipp Koehn

March 27, 2026

601.229 Computer Systems Fundamentals

| -

B il!,’

Memory management

One Page Table per Process

Physical memory

Process 1
0: |0
2: |1 VP2
0 \
PP7 Shared page
Process 2
0: [O
1: |1 VP1 lalatl)
2: |1 VP2
3: |0

Process Address Space

Kernel memory

400000

User stack

v
A

Memory-mapped region
for shared libraries

f

Run time heap (created by
malloc)

Stack pointer

Loaded from
executable

Simplified Linking

400000

» Each process has its code in address 0x400000
» Easy linking: Linker can establish fixed addresses

Simplified Loading

» When loading process into memory...
» Enter .data and .text section into page table

Simplified Loading

» When loading process into memory...
» Enter .data and .text section into page table
» Mark them as invalid (= not actually in RAM)

Simplified Loading

» When loading process into memory...
» Enter .data and .text section into page table
» Mark them as invalid (= not actually in RAM)

» Called memory mapping (more on that later)

Simplified Sharing

Physical memory

Shared libraries

Shared libraries used by several
processes: e.g., stdio providing
printf, scanf, open, close, ...

-\

F.V

Not copied multiple times
into RAM

Shared libraries

Simplified Memory Allocation

» Process may need more memory (e.g., malloc call)
= New entry in page table

» Mapped to arbitrary pages in physical memory

» Do not have to be contiguous

Memory Protection

VP 0
Process1 VP1
VP 2

VP 0
Process2 VP1
VP 2

SUP READ WRT Address

Physical memory

no | yes | no PP 6
no | yes | yes PP 4
yes | yes | yes PP 2
SUP READ WRT Address
no [yes | no PP 9
yes | yes | yes PP 6
no | yes | yes | PP 11

» Page may be kernel only: SUP=yes

» Page may be read-only (e.g., code)

/

PP O

PP 2

PP 4

PP 6

PP 9

PP 11

Address translation

Address Space

» Virtual memory size: N = 2% bytes

» Physical memory size: M = 2% bytes

» Page (block of memory): P = 2P bytes

» A virtual address can be encoded in n bits

Address Translation

» Task: mapping virtual address to physical address

» virtual address (VA): used by machine code instructions
» physical address (PA): location in RAM

» Formally
MAP: VA — PA U0
where:
MAP(A) = PA if in RAM
= 0 otherwise
» Note: this happens very frequently in machine code
» We will do this in hardware: Memory Management Unit (MMU)

Basic Architecture

Virtual address

Physical address

Basic Architecture

Virtual address

Valid Physical page number

page table >
base register

Physical address

Basic Architecture

Virtual address

virtual page number page offset

Valid Physical page number

page table >
base register

physical page number | page offset

Physical address

Basic Architecture

Virtual address

—|0 virtual page number page offset

Valid Physical page number

page table
base register

Yy

valid=0? — |
L

-> page fault
A

physical page number | page offset |

Physical address

CPU chip
PTEA _
_ . PTE
VA <+
CPU > MMU : Memory
A PA_
Data

» VA: CPU requests data at virtual address

CPU chip
PTEA
PTE
VA <+
CPU > MMU : Memory
A PA_
Data

» VA: CPU requests data at virtual address
» PTEA: look up page table entry in page table

CPU chip
PTEA
PTE
VA <+
CPU > MMU : Memory
A PA_
Data

» VA: CPU requests data at virtual address
» PTEA: look up page table entry in page table
» PTE: returns page table entry

CPU chip
PTEA
PTE
VA <+
CPU > MMU : Memory
A PA_
Data

» VA: CPU requests data at virtual address

» PTEA: look up page table entry in page table

» PTE: returns page table entry

» PA: get physical address from entry, look up in memory

CPU chip
PTEA
PTE
VA <+
CPU > MMU : Memory
A PA_
Data

» VA: CPU requests data at virtual address

» PTEA: look up page table entry in page table

» PTE: returns page table entry

» PA: get physical address from entry, look up in memory
» Data: returns data from memory to CPU

Page Fault

Excepti .
e =I Page fault exception handler |
CPUCHIP e,
PTEA
PTE
VA .
CPU > MMU : Memory

» VA: CPU requests data at virtual address

Page Fault

Excepti .
e =I Page fault exception handler |
CPUCHIP e,
PTEA
PTE
VA .
CPU > MMU : Memory

» VA: CPU requests data at virtual address
» PTEA: look up page table entry in page table

Page Fault

Excepti .
e =I Page fault exception handler |
CPUCHIP e,
PTEA
PTE
VA .
CPU > MMU : Memory

» VA: CPU requests data at virtual address
» PTEA: look up page table entry in page table
» PTE: returns page table entry

Page Fault

Excepti .
e =I Page fault exception handler |
CPUCHIP e,
PTEA
PTE
VA .
CPU > MMU : Memory

» VA: CPU requests data at virtual address
» PTEA: look up page table entry in page table
» PTE: returns page table entry

» Exception: page not in physical memory

Page Fault

Exception ={ Page fault exception handler |
CPUChiD b
PTEA Victim page_
VA < PTE - New page "
CPU » MMU : Memory Disk
» VA: CPU requests data at virtual address > victim page to disk

» PTEA: look up page table entry in page table | » new page to memory

» PTE: returns page table entry > update page table

» Exception: page not in physical memory entries

» Page fault exception handler

Page Fault

Exception ={ Page fault exception handler |
CPUChp
: PTEA > Victim page_
VA -« PTE < New page "
CPU » MMU : Memory Disk
A : PA >

Data
» VA: CPU requests data at virtual address > victim page to disk
» PTEA: look up page table entry in page table | » new page to memory
» PTE: returns page table entry > update page table
» Exception: page not in physical memory entries
» Page fault exception handler » Re-do memory request

Page Miss Exception

» Complex task
» identify which page to remove from RAM (victim page)
» load page from disk to RAM
» update page table entry
» trigger do-over of instruction that caused exception
» Note
» loading into RAM very slow
» added complexity of handling in software no big deal

Clicker quiz!

Clicker quiz omitted from public slides

Refinements

» On-CPU cache
» Slow look-up time
» Huge address space

» Putting it all together

» On-CPU cache
— integrate cache and virtual memory
» Slow look-up time

» Huge address space

» Putting it all together

Integrating Caches and Virtual Memory

» Note

» we claim that using on-disk memory is too slow
» having data in RAM only practical solution

» Recall

» we previously claimed that using RAM is too slow
» having data in cache only practical solution

» Both true, so we need to combine

Integrating Caches and Virtual Memory

Py oI e,
' PTEA _
A - PTE R §
CPU > MMU Cache| : DRAM
r PA > .
Data

» MMU resolves virtual address to physical address

» Physical address is checked against cache

Integrating Caches and Virtual Memory

CPU chip
: PTEA _| miss? PTEA _
L. PTE L1 |le i _PTE
VA < «
CPU > MMU Cache| DRAM
PA .
A >

Data

» Cache miss in page table retrieval?
= Get page table from memory

Integrating Caches and Virtual Memory

CPU chip
: PTEA | miss? | : PTEA _
_ PIE L1 le PTE
VA - Il
CPU > MMU Cache| : DRAM
PA_ | miss? | ' PA
4 ‘ Data
Data

» Cache miss in data retrieval?

= Get data from memory

» On-CPU cache
— integrate cache and virtual memory

» Slow look-up time
— use translation lookahead buffer (TLB)

» Huge address space

» Putting it all together

» Every memory-related instruction must pass through MMU
(virtual memory look-up)

» Very frequent, this has to be very fast
» Locality to the rescue

» subsequent look-ups in same area of memory
» look-up for a page can be cached

Translation Lookup Buffer

» Same structure as cache
» Break up address into 3 parts

» lowest bits: offset in page
» middle bits: index (location) in cache
» highest bits: tag in cache

» Associative cache: more than one entry per index

Architecture

CPU chip

VA

MMU Memory
/Y . PA

)
e
c
\

\4

Data

» Translation lookup buffer (TLB) on CPU chip

Translation Lookup Buffer (TLB) Hit

CPUchip
TLB
A
PTEA| (PTE
VA :
CPU > MMU ; Memory
7y . PA

» Look up page table entry in TLB

Translation Lookup Buffer (TLB) Miss

CPUchip .
TLB
A
PTEA
. PTE
'PTEA
VA ; >
CPU > MMU ; Memory
A . PA >
Data

» Page table entry not in TLB
» Retrieve page table entry from RAM

	Memory management
	Address translation
	Refinements

