Lecture 24: Virtual Memory Il

Philipp Koehn

March 30, 2026

601.229 Computer Systems Fundamentals

| -

B il!,’

More refinements

» On-CPU cache
— integrate cache and virtual memory

» Slow look-up time
— use translation lookahead buffer (TLB)

» Huge address space
— multi-level page table

» Putting it all together

Page Table Size

» Example
» 32 bit address space: 4GB
» Page size: 4KB
» Size of page table entry: 4 bytes
— Number of pages: 1M
— Size of page table: 4MB
» Recall: one page table per process

» Very wasteful: most of the address space is not used

2-Level Page Table

Level 1 Level 2
page table page table
Valid Physical page
PTE 0
Valid Level 2 page table /
L2PTO
> PT1 PTE 1023
null
”U:: Valid Physical page
23" PTE 0
null
null
null
null Valid Physical page

PTE 1023

Multi-Level Page Table

» Our example: 1M entries

» 2-level page table
— each level 1K entry (1K?=1M)

» 4-level page table
— each level 32 entry (32%=1M)

Clicker quiz!

Clicker quiz omitted from public slides

» On-CPU cache
— integrate cache and virtual memory

» Slow look-up time
— use translation lookahead buffer (TLB)

» Huge address space
— multi-level page table

» Putting it all together

Virtual Address

CPU

v Virtual address

vPO |
VPN | VPO

Translation Lookup Buffer

CPU

v Virtual address

VPN VPO |

A4

TLBT | TLBI TLB

e
>
>
Ly

I I N A

Compose Address

CPU

v Virtual address

VPN VPO |

L1 Cache Lookup

CPU

' Virtual address

L1 Cache

B T 1 T | TLBhit -
=== SSSSSEsss
< O — — — <

CTT T T T T T J
| TEFTIIT
76] — [or Tolcd

Return Data From L1 Cache

CPU |« @

v Virtual address
VPN VPO |
L1 hit
\
TLBT | TLBI TLB
| L1 Cache
< I — — =Y -
EESSS Seeseees
<G o I — — >l
» LB B] 4
EEIIEIYY)

PP [Pro] — [T Toico]

Translation Lookup Buffer Miss

CPU

v Virtual address

VPN VPO |

\d

TLBT | TLBI TLB

L TLB hit
LB i<
miss LI]
> T T T]
Y y
[vPN1]vPN2vPN3 [VPN4] [PPN [PPO |

A
CR3

> PTE[- »|PTE[= »|PTE[" »|PTE

L1 Cache Miss

CPU |« Data RAM
U | = -
v Virtual address
VPN VPO |
L1 hit L1 miss
\
TLBT | TLBI
[LB L1 Cache
T T T — TLBhit <
== SR
< — — — <
I e s s e e O
(EETYALY,
v

P [P0] —» [o7 [afod]

Core i7

Chip Layout

Registers Instruction MMU
9 fetch (address translation)
A A A A
\ \ \ \
L1 data cache L1 instruction cache L1 data TLB L1 instruction TLB
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way
A A A A
\ \ \ \
L2 unified cache L2 unified TLB
256 KB, 8-way Single Core 512 entries, 4-way
A A . I
\ \
L3 unified cache DDR3 memory
8 MB, 16-way controller
(shared by all cores) (shared by all cores)
Chip with 4 cores A
... S SRRRREIIIIIEEPRRPRE

DDR3 memory

» Virtual memory: 48 bit (— 2% = 256 TB address space)
» Physical memory: 52 bit (— 2°2 = 4PB address space)
> Page size: 12 bit (— 22 = 4KB)

= 2%¢ = 64G entries, split in 4 levels (512 entries each)
» Translation lookup buffer (TLB): 4-way associative, 16 entries
» L1 cache: 8-way associative, 64 sets, 64 byte blocks (32 KB)
» L2 cache: 8-way associative, 512 sets, 64 byte blocks (256 KB)
» L3 cache: 16-way associative, 8K sets, 64 byte blocks (8 MB)

Linux

v

Close co-operation between hardware and software
» Each process has its own virtual address space, page table
» Translation look-up buffer
when switching processes — flush
» Page table
when switching processes — update pointer to top-level page table
» Page tables are always in physical memory
— pointers to page table do not require translation

Handling Page Faults

» Page faults trigger an exception (hardware)
» Exception is handled by software (Linux kernel)
» Kernel must determine what to do

Linux Virtual Memory Areas

task_struct mm_struct vm_area_struct Process VM
vm_end

pgd vm_start
vm_prot
mmap vm_flags

Y

mm

vm_next Shared Libraries

vm_end
vm_start
vm_prot
vm_flags

Data

» pgd: address of page table

vm_next

» vm_flags: private, shared ot

vm_end

» vm_prot: read, write —1 >

vm_prot
vm_flags

vm_next

Handling Page Faults

vm_area_struct Process VM
vm_end
vm_start
vm_prot
vm_flags

vm_next Shared Libraries
|-: vm_end

vm_start
vm_prot
vm_flags

[<—— Segmentation fault

Data <—— Normal page fault
vm_next (-> load page)

|: Text <—— Protection exception
vm_end (if write)
vm_start —

vm_prot
vm_flags

vm_next

Kernel walks through vm_area_struct list to resolve page fault

Memory mapping

Objects on Disk

» Area of virtual memory = file on disk

» Regular file in file system
» file divided up into pages
» demand loading: just mapped to addresses, not actually loaded
» could be code, shared library, data file

» Anonymous file

» typically allocated memory
» when used for the first time: set all values to zero
» never really on disk, except when swapped out

Shared Object

» A shared object is a file on disk
» Private object

» only its process can read/write

» changes not visible to other processes
» Shared object

» multiple processes can read/write
» changes visible to other processes

fork()

» Creates a new child process

» Copies all
» virtual memory area structures
» memory mapping structures
» page tables

» New process has identical access
to existing memory

User stack

v
A

Memory-mapped region
for shared libraries

f

Run time heap (created by
malloc)

execve()

User stack

v
A

» Creates a new process Memory-mapped region
for shared libraries

» Deletes all user areas

» Map private areas (.data, .code, .bss) f

» Map shared libraries Run time heap (created by

malloc)

» Set program counter

User-Level Memory Mapping

» Process can create virtual memory areas with mmap
(may be loaded from file)
» Protection options (handled by kernel / hardware)
» executable code
» read
> write
» inaccessible
» Mapping options
» anonymous: data object initially zeroed out
» private
» shared

Dynamic memory allocation

Memory Allocation in C

> malloc()
» allocate specified amount of data
» return pointer to (virtual) address
» memory is allocated on heap
> free()
» frees memory allocated at pointer location
» may be between other allocated memory

» Need to track of list of allocated memory

» Each square is a 4-byte word

» Heap consists of 20 words

» Allocations must be aligned on a multiple of 8
» Shading indicates use:

» No shading: unallocated memory
» Dark: allocated memory
» Light: padding to ensure alignment

hllllllllllllllll

pl = malloc(4*sizeof(int))

hllllllllllllllll

pl = malloc(4*sizeof(int))
pl p2
IR [[[T TTTTT]

p2 = malloc(5*sizeof(int))

hllllllllllllllll

pl = malloc(4*sizeof(int))

pl p2
IR [[[T TTTTT]
p2 = malloc(5*sizeof(int))

p3

pl p2

p3 = malloc(6*sizeof(int))

hllllllllllllllll

pl = malloc(4*sizeof(int))

pl p2
N7 [[[[[TTTT]
p2 = malloc(5*sizeof(int))

pl p2 p3

T P (771
p3 = malloc(6*sizeof(int))
pl p3

IO [[[T T D [111
free(p2)

hllllllllllllllll

pl = malloc(4*sizeof(int))

pl p2
N7 [[[[[TTTT]
p2 = malloc(5*sizeof(int))

pl p2 p3

T P (771
p3 = malloc(6*sizeof(int))
pl p3

I 'HEEEEN || | IEER
free(p2)
pl p4 p3

I [[T I [111
p4d = malloc(2*sizeof(int))

Fragmentation

» Internal: unused space due to padding for
» alignment
» minimum block size
» External: as memory is allocated and freed:
» allocated blocks are scattered over the heap area
» there are gaps of various sizes between allocated blocks
» it might not be possible to find a large enough gap to satisfy an
allocation request, even though enough aggregate memory is available

» Free list
» need to maintain a list of free memory areas
» implicit: space between allocated memory
» explicit: maintain a separate list

	More refinements
	Core i7
	Linux
	Memory mapping
	Dynamic memory allocation

