
Lecture 27: Sockets, Application Protocols

David Hovemeyer

April 10, 2026

601.229 Computer Systems Fundamentals

Example code

Today’s example code is on course web page in sockets.zip

Unix sockets

Unix sockets

Unix sockets: API to allow programs to communicate over networks

Designed to work with many underlying protocols

Socket = “communications endpoint”, appears to process as a file descriptor

Several important kinds of sockets:
▶ Server socket: used by server to accept connections from clients (not

used for actual exchange of data)
▶ Client socket: used to exchange data between client and server systems

Socket system calls

Important socket system calls:

socket: create an unconnected socket

bind: associate a socket with a network interface identified by
a network address

listen: make a socket a server socket (to allow incoming connections)

accept: wait for an incoming connection

connect: initiate a connection to a remote system

Socket addresses

Socket API designed to work with many underlying network technologies

struct sockaddr: “supertype” for all network addresses
▶ A “type” field is at beginning of struct to distinguish variants
▶ E.g. if type field contains AF_INET, it’s an IP address

struct sockaddr_in: “subtype” for IP addresses

Create server socket

int create_server_socket(int port) {
struct sockaddr_in serveraddr = {0};
int ssock_fd = socket(AF_INET, SOCK_STREAM, 0);
if (ssock_fd < 0)

fatal("socket failed");

serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
serveraddr.sin_port = htons((unsigned short)port);
if (bind(ssock_fd, (struct sockaddr *) &serveraddr,

sizeof(serveraddr)) < 0)
fatal("bind failed");

if (listen(ssock_fd, 5) < 0) fatal("listen failed");

return ssock_fd;
}

Wait for incoming connection

int accept_connection(int ssock_fd, struct sockaddr_in clientaddr) {
unsigned clientlen = sizeof(clientaddr);
int childfd = accept(ssock_fd,

(struct sockaddr *) &clientaddr,
&clientlen);

if (childfd < 0)
fatal("accept failed");

return childfd;
}

Server loop

int main(int argc, char **argv) {
char buf[256];
int port = atoi(argv[1]);
int ssock_fd = create_server_socket(port);

while (1) {
struct sockaddr_in clientaddr;
int clientfd = accept_connection(ssock_fd, &clientaddr);
ssize_t rc = read(clientfd, buf, sizeof(buf));
if (rc > 0) {

write(clientfd, buf, rc);
}
close(clientfd);

}
}

Clicker quiz!

Clicker quiz omitted from public slides

Testing the server

Run the server:
$ gcc -Wall -o server server.c
$./server 30000

Test using telnet program:
$ telnet localhost 30000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
hey there!
hey there!
Connection closed by foreign host.

Implementation issues

▶ Reading from socket can return fewer bytes than requested (generally
need to call read in a loop)

▶ Network connections can be broken (need to check result of read and
write, error often indicates that the connection no longer exists)

Hostnames

DNS: Domain Name Service

Assign meaningful names (such as ugradx.cs.jhu.edu) to network
addresses (such as 128.220.224.100)

getaddrinfo: look up network address for hostname

csapp.h/csapp.c

The textbook (Computer Systems: A Programmer’s Perspective) includes a
library of convenient functions for writing network applications

open_listenfd: open a server socket given port name as string

open_clientfd: simplified interface for connecting to a server by specifying
host name (or address) and port

rio_ functions: Robust I/O routines, handle looping for short reads/writes
and interruptions from signals automatically
▶ rio_t: data type wrapping a file descriptor and allowing buffered input
▶ rio_readnb: read n bytes from a rio_t
▶ rio_readlineb: read a line of input from a rio_t

Using these routines can significantly reduce the complexity of implementing
network applications in C and C++

Application protocols

Application protocols

Application protocol : determines how data is exchanged by instances of an
application program
▶ Usually: a server and a client
▶ Another possibility: peer to peer (P2P) applications

Example: HTTP, HyperText Transport Protocol
▶ Used by web browsers and web servers

Application protocols in 1 minute

Synchronous: The connected peers take turns talking
▶ Asynchronous protocols: possible, but significantly more complicated to

implement

Client/server protocol: client sends request, server sends response
▶ Repeat as necessary

Message format: both peers must be able to determine where each message
starts and ends
▶ Also, each peer must be able to determine the meaning of each received

message

Text-based protocols are common because they are easy to debug and reason
about

HTTP

A synchronous client/server protocol used by web browsers,
web servers, web clients, and web services
▶ HTTP 1.1: https://tools.ietf.org/html/rfc2616

Client sends request to server, server sends back a response
▶ Each client request specifies a verb (GET, POST, PUT, etc.)

and the name of a resource

Requests and responses may have a body containing data
▶ The body’s content type specifies what kind of data the body

contains

https://tools.ietf.org/html/rfc2616

HTTP request example

Command:
curl -v http://placekitten.com/1024/768 -o kitten.jpg

Request sent by curl program:
GET /1024/768 HTTP/1.1
Host: placekitten.com
User-Agent: curl/7.58.0
Accept: */*

Request is sent via a TCP connection to port 80

HTTP response example

Response sent by placekitten.com:
HTTP/1.1 200 OK
Date: Wed, 13 Nov 2019 12:33:20 GMT
Content-Type: image/jpeg
Transfer-Encoding: chunked
Connection: keep-alive
Set-Cookie: __cfduid=de2a22cdd3ed939398e0a56f41ce0e4a31573648400; expires=Thu, 12-Nov-20 12:33:20 GMT; path=/; domain=.placekitten.com; HttpOnly
Access-Control-Allow-Origin: *
Cache-Control: public, max-age=86400
Expires: Thu, 31 Dec 2020 20:00:00 GMT
CF-Cache-Status: HIT
Age: 51062
Server: cloudflare
CF-RAY: 5350c608682a957e-IAD

Headers were followed by a body containing 40,473 bytes of binary data

Kitten

Slightly more complete example

A simple client/server implementation

▶ Limitations of previous server.c example:
▶ Only echoes back client message
▶ No mechanism to request server to shut down
▶ Uses raw system calls, code is somewhat complicated

▶ “Addition server”:
▶ Reads integer values, computes the sum, sends sum back to client
▶ Client can sent quit message
▶ Implemented using csapp functions: code is less complicated, more

robust
▶ Better starting point for your own clients and servers

Server main function

int main(int argc, char *argv[]) {
if (argc != 2) { fatal("Usage: ./arithserver <port>"); }

int server_fd = open_listenfd(argv[1]);
if (server_fd < 0) { fatal("Couldn't open server socket\n"); }

int keep_going = 1;
while (keep_going) {

int client_fd = Accept(server_fd, NULL, NULL);
if (client_fd > 0) {

keep_going = chat_with_client(client_fd);
close(client_fd); // close the connection

}
}
close(server_fd); // close server socket

return 0;
}

Explanation of server main

▶ Uses open_listenfd to create server socket (csapp function)
▶ In main loop:
▶ Call Accept to wait for client to connect (csapp function)
▶ Call chat_with_client to read and decode request, do computation,

send response back to client
▶ chat_with_client can return 0 to end loop and shut down server

Server chat_with_client function

int chat_with_client(int client_fd) {
rio_t rio; int sum = 0, val;
rio_readinitb(&rio, client_fd);

// Read line from client
char buf[1024];
ssize_t rc = rio_readlineb(&rio, buf, sizeof(buf));
if (rc < 0) { return 1; } // error reading data from client

if (strcmp(buf, "quit\n") == 0 || strcmp(buf, "quit\r\n") == 0) {
return 0;

} else {
FILE *in = fmemopen(buf, (size_t) rc, "r");
while (fscanf(in, "%d", &val) == 1) { sum += val; }
fclose(in);
snprintf(buf, sizeof(buf), "Sum is %d\n", sum);
rio_writen(client_fd, buf, strlen(buf));
return 1;

}
}

Explanation of chat_with_client

▶ Use a rio_t object and rio functions for I/O
▶ rio = “robust I/O”
▶ Unbuffered reads/writes, ensures all data is read/written
▶ Buffered reads (e.g., rio_readlineb to read a complete input line)
▶ More suitable for network communication than C standard I/O:

thread safe, buffered reads can be freely mixed with unbuffered reads
▶ Read message from client, scan for integer values, send sum as response
▶ A more realistic implementation would have a loop to allow client to

send multiple requests

Testing server using telnet

Running the server:
$./arithserver 40000

Testing using telnet:
$ telnet localhost 40000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
1 2 3
Sum is 6
Connection closed by foreign host.

telnet is quite useful for connecting to servers which support a
plaintext-based protocol

Client implementation

int main(int argc, char *argv[]) {
if (argc != 4) { fatal("Usage: ./arithclient <hostname> <port> <message>"); }

int fd = open_clientfd(argv[1], argv[2]);
if (fd < 0) { fatal("Couldn't connect to server"); }

rio_writen(fd, argv[3], strlen(argv[3])); // send message to server
rio_writen(fd, "\n", 1);

rio_t rio; // read response from server
rio_readinitb(&rio, fd);
char buf[1000];
ssize_t n = rio_readlineb(&rio, buf, sizeof(buf));

if (n > 0) { // print response
printf("Received from server: %s", buf);

}
close(fd);
return 0;

}

Client implementation explanation

▶ Use open_clientfd to connect to server (csapp function)
▶ rio_writen to send data to server
▶ rio_readlineb to receive response from server

	Unix sockets
	Application protocols
	Slightly more complete example

