
Lecture 29: Concurrency with pthreads

David Hovemeyer

April 15, 2026

601.229 Computer Systems Fundamentals

Web server

Main web server loop:
while (1) {

int clientfd = accept(serverfd, NULL, NULL);
if (clientfd < 0) { fatal("Error accepting client connection"); }
server_chat_with_client(clientfd, webroot);
close(clientfd);

}

Do you see any limitations of this design?

The server can only communicate with one client at a time

Web server

Main web server loop:
while (1) {

int clientfd = accept(serverfd, NULL, NULL);
if (clientfd < 0) { fatal("Error accepting client connection"); }
server_chat_with_client(clientfd, webroot);
close(clientfd);

}

Do you see any limitations of this design?

The server can only communicate with one client at a time

Concurrency using processes

Processes created with fork can be used for concurrency, but processes are a
heavyweight abstraction requiring significant resources:

They require:

▶ Address space data structures
▶ Open file table
▶ Process context data
▶ Etc.

Scheduling a process requires switching address spaces (possibly losing useful
context built up in caches and TLB)

Concurrency using processes

Processes created with fork can be used for concurrency, but processes are a
heavyweight abstraction requiring significant resources:

They require:
▶ Address space data structures

▶ Open file table
▶ Process context data
▶ Etc.

Scheduling a process requires switching address spaces (possibly losing useful
context built up in caches and TLB)

Concurrency using processes

Processes created with fork can be used for concurrency, but processes are a
heavyweight abstraction requiring significant resources:

They require:
▶ Address space data structures
▶ Open file table

▶ Process context data
▶ Etc.

Scheduling a process requires switching address spaces (possibly losing useful
context built up in caches and TLB)

Concurrency using processes

Processes created with fork can be used for concurrency, but processes are a
heavyweight abstraction requiring significant resources:

They require:
▶ Address space data structures
▶ Open file table
▶ Process context data

▶ Etc.

Scheduling a process requires switching address spaces (possibly losing useful
context built up in caches and TLB)

Concurrency using processes

Processes created with fork can be used for concurrency, but processes are a
heavyweight abstraction requiring significant resources:

They require:
▶ Address space data structures
▶ Open file table
▶ Process context data
▶ Etc.

Scheduling a process requires switching address spaces (possibly losing useful
context built up in caches and TLB)

Concurrency using processes

Processes created with fork can be used for concurrency, but processes are a
heavyweight abstraction requiring significant resources:

They require:
▶ Address space data structures
▶ Open file table
▶ Process context data
▶ Etc.

Scheduling a process requires switching address spaces (possibly losing useful
context built up in caches and TLB)

Threads

Threads are a mechanism for concurrency within a single process/address
space

A thread is a “virtual CPU” (program counter and registers): each thread can
be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:

▶ Context (memory in which to save register values when thread is
suspended)

▶ A stack
▶ Thread-local storage (for per-thread variables)

Threads

Threads are a mechanism for concurrency within a single process/address
space

A thread is a “virtual CPU” (program counter and registers): each thread can
be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:
▶ Context (memory in which to save register values when thread is

suspended)

▶ A stack
▶ Thread-local storage (for per-thread variables)

Threads

Threads are a mechanism for concurrency within a single process/address
space

A thread is a “virtual CPU” (program counter and registers): each thread can
be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:
▶ Context (memory in which to save register values when thread is

suspended)
▶ A stack

▶ Thread-local storage (for per-thread variables)

Threads

Threads are a mechanism for concurrency within a single process/address
space

A thread is a “virtual CPU” (program counter and registers): each thread can
be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:
▶ Context (memory in which to save register values when thread is

suspended)
▶ A stack
▶ Thread-local storage (for per-thread variables)

Pthreads

Pthreads

Pthreads = “POSIX threads”

Standard API for using threads on Unix-like systems

Allows:
▶ Creating threads and waiting for them to complete
▶ Synchronizing threads (more on this soon)

Can be used for both concurrency and parallelism (on multicore machines,
threads can execute in parallel)

Basic concepts

Some basic concepts:

pthread_t: the thread id data type, each running thread has a distinct
thread id

Thread attributes: runtime characteristics of a thread
▶ Many programs will just create threads using the default attributes

Attached vs. detached : a thread is attached if the program will explicitly call
pthread_join to wait for the thread to finish.

pthread_create

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

Creates a new thread. Thread id is stored in variable pointed-to by thread
parameter. The attr parameter specifies attributes (NULL for default
attributes.)

The created thread executes the start_routine function, which is passed arg
as its parameter.

Returns 0 if successful.

pthread_join

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

Waits for specified thread to finish. Only attached threads can be waited for.

Value returned by exited thread is stored in the variable pointed-to by retval.

pthread_self

#include <pthread.h>

pthread_t pthread_self(void);

Allows a thread to find out its own thread id.

pthread_detach

#include <pthread.h>

int pthread_detach(pthread_t thread);

Changes the specified thread to be detached, so that its resources can be
freed without another thread explicitly calling pthread_join.

Multithreaded web server

Third version of the example web server: mt_webserver.zip on course web
page

Features:

▶ Server will create a thread for each client connection
▶ Created threads are detached : the server program doesn’t wait for them

to complete
▶ No limit on number of threads that can be created
▶ Only the main function is different than original version

Multithreaded web server

Third version of the example web server: mt_webserver.zip on course web
page

Features:

▶ Server will create a thread for each client connection

▶ Created threads are detached : the server program doesn’t wait for them
to complete

▶ No limit on number of threads that can be created
▶ Only the main function is different than original version

Multithreaded web server

Third version of the example web server: mt_webserver.zip on course web
page

Features:

▶ Server will create a thread for each client connection
▶ Created threads are detached : the server program doesn’t wait for them

to complete

▶ No limit on number of threads that can be created
▶ Only the main function is different than original version

Multithreaded web server

Third version of the example web server: mt_webserver.zip on course web
page

Features:

▶ Server will create a thread for each client connection
▶ Created threads are detached : the server program doesn’t wait for them

to complete
▶ No limit on number of threads that can be created

▶ Only the main function is different than original version

Multithreaded web server

Third version of the example web server: mt_webserver.zip on course web
page

Features:

▶ Server will create a thread for each client connection
▶ Created threads are detached : the server program doesn’t wait for them

to complete
▶ No limit on number of threads that can be created
▶ Only the main function is different than original version

struct ConnInfo

struct ConnInfo: represents a client connection:
struct ConnInfo {

int clientfd;
const char *webroot;

};

It’s useful to pass an object containing data about the task the
thread has been assigned to the thread’s start function

worker function

The worker function (executed by client connection threads):
void *worker(void *arg) {

struct ConnInfo *info = arg;

pthread_detach(pthread_self());

server_chat_with_client(info->clientfd, info->webroot);
close(info->clientfd);
free(info);

return NULL;
}

A created thread detaches itself, handles the client request, closes the client
socket, frees its ConnInfo object, then returns

main loop

Main loop:
while (1) {

int clientfd = accept(serverfd, NULL, NULL);
if (clientfd < 0) {

fatal("Error accepting client connection");
}

struct ConnInfo *info = malloc(sizeof(struct ConnInfo));
info->clientfd = clientfd;
info->webroot = webroot;

pthread_t thr_id;
if (pthread_create(&thr_id, NULL, worker, info) != 0) {

fatal("pthread_create failed");
}

}

Clicker quiz!

Clicker quiz omitted from public slides

Trying it out

Compile and run the server:
$ gcc -o mt_webserver main.c webserver.c csapp.c -lpthread
$./mt_webserver 30000 ./site

Result
Visiting URL http://localhost:30000/index.html

http://localhost:30000/index.html

Multithreaded programming

Shared memory

Main issue with writing multithreaded progams is that the threads execute in
the same address space, so they share memory

A variable written by one thread may be read by another!
▶ Can be useful for communication between threads
▶ Can also be dangerous

Reentrancy

Some functions are designed to use global variables:
▶ strtok (for tokenizing C character string, retains state between calls)
▶ gethostbyname returns pointer to global struct hostent object

Functions which use global variables are not reentrant

“Reentrant” means function can be safely “reentered” before a
currently-executing call to the same function completes

Non-reentrant functions are dangerous for multithreaded programs (and also
cause issues when called from recursive functions)

Reentrancy

Some functions are designed to use global variables:
▶ strtok (for tokenizing C character string, retains state between calls)
▶ gethostbyname returns pointer to global struct hostent object

Functions which use global variables are not reentrant

“Reentrant” means function can be safely “reentered” before a
currently-executing call to the same function completes

Non-reentrant functions are dangerous for multithreaded programs (and also
cause issues when called from recursive functions)

Reentrancy

Some functions are designed to use global variables:
▶ strtok (for tokenizing C character string, retains state between calls)
▶ gethostbyname returns pointer to global struct hostent object

Functions which use global variables are not reentrant

“Reentrant” means function can be safely “reentered” before a
currently-executing call to the same function completes

Non-reentrant functions are dangerous for multithreaded programs (and also
cause issues when called from recursive functions)

Reentrancy

Some functions are designed to use global variables:
▶ strtok (for tokenizing C character string, retains state between calls)
▶ gethostbyname returns pointer to global struct hostent object

Functions which use global variables are not reentrant

“Reentrant” means function can be safely “reentered” before a
currently-executing call to the same function completes

Non-reentrant functions are dangerous for multithreaded programs (and also
cause issues when called from recursive functions)

Writing reentrant functions

Tips for writing reentrant functions:

▶ Don’t use global variables
▶ Memory used by a reentrant function should be limited to
▶ Local variables (on stack), or
▶ Heap buffers not being used by other threads

▶ It’s a good idea to have functions receive explicit pointers to memory they
should use

Writing reentrant functions

Tips for writing reentrant functions:
▶ Don’t use global variables

▶ Memory used by a reentrant function should be limited to
▶ Local variables (on stack), or
▶ Heap buffers not being used by other threads

▶ It’s a good idea to have functions receive explicit pointers to memory they
should use

Writing reentrant functions

Tips for writing reentrant functions:
▶ Don’t use global variables
▶ Memory used by a reentrant function should be limited to
▶ Local variables (on stack), or

▶ Heap buffers not being used by other threads
▶ It’s a good idea to have functions receive explicit pointers to memory they

should use

Writing reentrant functions

Tips for writing reentrant functions:
▶ Don’t use global variables
▶ Memory used by a reentrant function should be limited to
▶ Local variables (on stack), or
▶ Heap buffers not being used by other threads

▶ It’s a good idea to have functions receive explicit pointers to memory they
should use

Writing reentrant functions

Tips for writing reentrant functions:
▶ Don’t use global variables
▶ Memory used by a reentrant function should be limited to
▶ Local variables (on stack), or
▶ Heap buffers not being used by other threads

▶ It’s a good idea to have functions receive explicit pointers to memory they
should use

Example: strtok vs. strtok_r

The strtok function uses an implicit global variable to keep track of progress:
char buf[] = "foo bar baz";
printf("%s\n", strtok(buf, " ")); /* prints "foo" */
printf("%s\n", strtok(NULL, " ")); /* prints "bar" */
printf("%s\n", strtok(NULL, " ")); /* prints "baz" */

The reentrant strtok_r function makes the progress variable explicit by
taking a pointer to it as a parameter:

/* same output as code example above */
char buf[] = "foo bar baz", *save;
printf("%s\n", strtok_r(buf, " ", &save));
printf("%s\n", strtok_r(NULL, " ", &save));
printf("%s\n", strtok_r(NULL, " ", &save));

Always use reentrant versions of library functions, and make your own
functions reentrant!

Example: strtok vs. strtok_r

The strtok function uses an implicit global variable to keep track of progress:
char buf[] = "foo bar baz";
printf("%s\n", strtok(buf, " ")); /* prints "foo" */
printf("%s\n", strtok(NULL, " ")); /* prints "bar" */
printf("%s\n", strtok(NULL, " ")); /* prints "baz" */

The reentrant strtok_r function makes the progress variable explicit by
taking a pointer to it as a parameter:

/* same output as code example above */
char buf[] = "foo bar baz", *save;
printf("%s\n", strtok_r(buf, " ", &save));
printf("%s\n", strtok_r(NULL, " ", &save));
printf("%s\n", strtok_r(NULL, " ", &save));

Always use reentrant versions of library functions, and make your own
functions reentrant!

Example: strtok vs. strtok_r

The strtok function uses an implicit global variable to keep track of progress:
char buf[] = "foo bar baz";
printf("%s\n", strtok(buf, " ")); /* prints "foo" */
printf("%s\n", strtok(NULL, " ")); /* prints "bar" */
printf("%s\n", strtok(NULL, " ")); /* prints "baz" */

The reentrant strtok_r function makes the progress variable explicit by
taking a pointer to it as a parameter:

/* same output as code example above */
char buf[] = "foo bar baz", *save;
printf("%s\n", strtok_r(buf, " ", &save));
printf("%s\n", strtok_r(NULL, " ", &save));
printf("%s\n", strtok_r(NULL, " ", &save));

Always use reentrant versions of library functions, and make your own
functions reentrant!

Synchronization

For many (but not all!) multithreaded programs, it’s useful to have explicit
communication/interaction between threads

Concurrently-executing threads can use shared data structures to communicate

But: concurrent modification of shared data is likely to lead to violated data
structure invariants, corrupted program state, etc.

Synchronization mechanisms allow multiple threads to access shared data
cooperatively
▶ More on this eventually
▶ 10 second version: queues are awesome

Synchronization

For many (but not all!) multithreaded programs, it’s useful to have explicit
communication/interaction between threads

Concurrently-executing threads can use shared data structures to communicate

But: concurrent modification of shared data is likely to lead to violated data
structure invariants, corrupted program state, etc.

Synchronization mechanisms allow multiple threads to access shared data
cooperatively
▶ More on this eventually
▶ 10 second version: queues are awesome

Synchronization

For many (but not all!) multithreaded programs, it’s useful to have explicit
communication/interaction between threads

Concurrently-executing threads can use shared data structures to communicate

But: concurrent modification of shared data is likely to lead to violated data
structure invariants, corrupted program state, etc.

Synchronization mechanisms allow multiple threads to access shared data
cooperatively
▶ More on this eventually
▶ 10 second version: queues are awesome

Parallel computation

Mandelbrot set

Assume C is a complex number, and Z0 = 0 + 0i

Iterate the following equation an arbitrary number of times, starting with Z0:

Zn+1 = Zn
2 + C

Does the magnitude of Z ever reach 2 (for any finite number of iterations)?
▶ No → C is in the Mandelbrot set
▶ Yes → C is not in the Mandelbrot set

Visualizing the Mandelbrot set

For some region of the complex plane, sample points and determine whether
they are in the Mandelbrot set

Assume a point C is in the set if the equation can be iterated at large number
of times without magnitude of Z reaching 2

For points C not in the set, choose a color based on number of iterations
before magnitude of Z reaches 2

Complex numbers

typedef struct { double real, imag; } Complex;

static inline Complex complex_add(Complex left, Complex right) {
Complex sum = { left.real+right.real, left.imag+right.imag };
return sum;

}

static inline Complex complex_mul(Complex left, Complex right) {
double a = left.real, b = left.imag, c = right.real, d = right.imag;
Complex prod = { a*c - b*d, b*c + a*d };
return prod;

}

static inline double complex_mag(Complex c) {
return sqrt(c.real*c.real + c.imag*c.imag);

}

Computation

Function to iterate the equation for a specific complex number,
up to a maximum number of iterations

int mandel_num_iters(Complex c) {
Complex z = { 0.0, 0.0 };
int num_iters = 0;
while (complex_mag(z) < 2.0 && num_iters < MAX_ITERS) {

z = complex_add(complex_mul(z, z), c);
num_iters++;

}
return num_iters;

}

Visualization

For complex numbers a + bi where −2 < a < 2 and −2 < b < 2:

Visualization

For complex numbers a + bi where −1.28667 < a < −1.066667 and
−0.413333 < b < −0.193333:

Observation

The computation for each point in the complex plane is completely
independent
▶ I.e., an embarrassingly parallel problem

We can speed up the computation by doing the computation for different
points in parallel on multiple CPU cores

Approach:
▶ Use an array to store iteration counts (one per complex number)
▶ Create fixed number of computation threads
▶ Assign a subset of array elements to each computation thread
▶ When all threads have finished, use iteration counts to render image

Fork/join parallel computation

Sequential computation

Core of the sequential Mandelbrot computation:
int *iters = malloc(sizeof(int) * NROWS * NCOLS);
for (int i = 0; i < NROWS; i++) {

mandel_compute_row(iters, NROWS, NCOLS,
xmin, xmax, ymin, ymax,
i);

}

The mandel_compute_row function computes iteration counts for a row of
complex numbers, storing them in the iters array

Fork/join: task struct, start func

typedef struct {
double xmin, xmax, ymin, ymax;
int *iters;
int start_row, skip;

} Work;

void *worker(void *arg) {
Work *work = arg;

for (int i = work->start_row; i < NROWS; i += work->skip) {
mandel_compute_row(work->iters, NROWS, NCOLS,

work->xmin, work->xmax, work->ymin, work->ymax,
i);

}

return NULL;
}

Fork/join: parallel computation

/* supervisor work assignment */
Work supervisor = { xmin, xmax, ymin, ymax, iters, 0, NUM_THREADS };

/* start threads */
pthread_t threads[NUM_THREADS];
Work work[NUM_THREADS];
for (int i = 0; i < NUM_THREADS; i++) {

work[i] = supervisor;
work[i].start_row = i; /* each thread has different start row */
pthread_create(&threads[i], NULL, worker, &work[i]);

}

/* wait for threads to complete */
for (int i = 0; i < NUM_THREADS; i++) {

pthread_join(threads[i], NULL);
}

Results

Running sequential vs. 4 threads on Core i5-3470T (dual core, hyperthreaded):
$ time ./mandelbrot -1.286667 -1.066667 -0.413333 -0.193333
Success?

real 0m2.020s
user 0m2.012s
sys 0m0.008s
$ time ./mandelbrot_par -1.286667 -1.066667 -0.413333 -0.193333
Success?

real 0m0.815s
user 0m3.054s
sys 0m0.000s

Source code on web page: mandelbrot.zip

	Pthreads
	Multithreaded programming
	Parallel computation

