Lecture 30: Thread synchronization

David Hovemeyer

April 17, 2026

601.229 Computer Systems Fundamentals

=N

S il:,’

A program

const int NUM_INCR=100000000, NTHREADS=2;
typedef struct { volatile int count; } Shared;

void *worker(void *arg) {
Shared *obj = arg;
for (int i = 0; i < NUM_INCR/NTHREADS; i++)
obj->count++;
return NULL;
}

int main(void) {

Shared *obj = calloc(l, sizeof(Shared));

pthread_t threads [NTHREADS] ;

for (int i = 0; i < NTHREADS; i++)
pthread_create(&threads[i], NULL, worker, obj);

for (int i = 0; i < NTHREADS; i++)
pthread_join(threads[i], NULL);

printf ("%d\n", obj->count);

return O;

The program uses two threads, which repeatedly increment a shared counter
The counter is incremented a total of 100,000,000 times, starting from 0

So, the final value should be 100,000,000; running the program, we get

The program uses two threads, which repeatedly increment a shared counter
The counter is incremented a total of 100,000,000 times, starting from 0

So, the final value should be 100,000,000; running the program, we get

$ gcc -Wall -Wextra -pedantic -std=gnull -02 -c incr_race.c
$ gcc -o incr_race incr_race.o -lpthread
$./incr_race

53015619

The program uses two threads, which repeatedly increment a shared counter
The counter is incremented a total of 100,000,000 times, starting from 0

So, the final value should be 100,000,000; running the program, we get

$ gcc -Wall -Wextra -pedantic -std=gnull -02 -c incr_race.c

$ gcc -o incr_race incr_race.o -lpthread
$./incr_race

53015619

What happened?

Incrementing the counter (obj->count++) is not atomic

Incrementing the counter (obj->count++) is not atomic

In general, we should think of var++ as really meaning
reg = var,;
reg = reg + 1;
var = reg;

Incrementing the counter (obj->count++) is not atomic

In general, we should think of var++ as really meaning

reg = var,;

reg = reg + 1;

var = reg;
When threads are executing concurrently, it's possible for the variable to
change between the time its value is loaded and the time the updated value is
stored

Incrementing the counter (obj->count++) is not atomic

In general, we should think of var++ as really meaning

reg = var,;

reg = reg + 1;

var = reg;
When threads are executing concurrently, it's possible for the variable to
change between the time its value is loaded and the time the updated value is
stored

Example of a data race causing a lost update

Concurrent access to shared data

Point to ponder: if concurrent access can screw up something as simple as an
integer counter, imagine the complete mess it will make of your linked list,
balanced tree, etc.

Concurrent access to shared data

Point to ponder: if concurrent access can screw up something as simple as an
integer counter, imagine the complete mess it will make of your linked list,
balanced tree, etc.

Data structures have invariants which must be preserved

Concurrent access to shared data

Point to ponder: if concurrent access can screw up something as simple as an
integer counter, imagine the complete mess it will make of your linked list,
balanced tree, etc.

Data structures have invariants which must be preserved

Mutations (insertions, removals) often violate these invariants temporarily

» Not a problem in a sequential program because the operation will
complete (and restore invariants) before anyone notices

» Huge problem in concurrent program where multiple threads could access
the data structure at the same time

Concurrent access to shared data

Point to ponder: if concurrent access can screw up something as simple as an
integer counter, imagine the complete mess it will make of your linked list,
balanced tree, etc.

Data structures have invariants which must be preserved

Mutations (insertions, removals) often violate these invariants temporarily

» Not a problem in a sequential program because the operation will
complete (and restore invariants) before anyone notices

» Huge problem in concurrent program where multiple threads could access
the data structure at the same time

Synchronization: protect shared data from concurrent access

Full source code for all of today’s examples is on web page, synch.zip

Semaphores and mutexes

Critical sections

A critical section is a region of code in which mutual exclusion must be
guaranteed for correct behavior

Critical sections

A critical section is a region of code in which mutual exclusion must be
guaranteed for correct behavior

Mutual exclusion means that at most one concurrent task (thread) may be
accessing shared data at any given time

Critical sections

A critical section is a region of code in which mutual exclusion must be
guaranteed for correct behavior

Mutual exclusion means that at most one concurrent task (thread) may be
accessing shared data at any given time

Enforcing mutual exclusion in critical sections guarantees atomicity

» |.e., code in critical section executes to completion without interruption

Critical sections

A critical section is a region of code in which mutual exclusion must be
guaranteed for correct behavior

Mutual exclusion means that at most one concurrent task (thread) may be
accessing shared data at any given time

Enforcing mutual exclusion in critical sections guarantees atomicity

» |.e., code in critical section executes to completion without interruption

For the shared counter program, the update to the shared counter variable is a
critical section

Semaphores and mutexes

Semaphores and mutexes are two types of synchronization constructs
available in pthreads

Both can be used to guarantee mutual exclusion
Semaphores can also be used to manage access to a finite resource

Mutexes (a.k.a., “mutual exclusion locks") are simpler, so let's discuss them
first

pthread mutex_t: data type for a pthreads mutex
pthread mutex_init: initialize a mutex

pthread mutex_lock: locks a mutex for exclusive access

» |If another thread has already locked the mutex, calling thread must wait
pthread mutex_unlock: unlocks a mutex
» If any threads are waiting to lock the mutex, one will be woken up and

allowed to acquire it

pthread mutex_destroy: destroys a mutex (once it is no longer needed)

Using a mutex to protected a shared data structure:

Using a mutex to protected a shared data structure:

» Associate a pthread_mutex_t variable with each instance of the data
structure

Using a mutex to protected a shared data structure:

» Associate a pthread_mutex_t variable with each instance of the data
structure

» Initialize with pthread_mutex_init when the data structure is initialized

Using a mutex to protected a shared data structure:

» Associate a pthread_mutex_t variable with each instance of the data
structure

» Initialize with pthread_mutex_init when the data structure is initialized
» Each critical section is protected with calls to

pthread mutex_lock and pthread mutex unlock

Using a mutex to protected a shared data structure:

» Associate a pthread_mutex_t variable with each instance of the data
structure

» Initialize with pthread_mutex_init when the data structure is initialized
» Each critical section is protected with calls to
pthread mutex_lock and pthread mutex unlock

» Destroy mutex with pthread mutex_destroy when data structure is
deallocated

Using a mutex to protected a shared data structure:

» Associate a pthread_mutex_t variable with each instance of the data
structure

» Initialize with pthread_mutex_init when the data structure is initialized
» Each critical section is protected with calls to
pthread mutex_lock and pthread mutex unlock

» Destroy mutex with pthread mutex_destroy when data structure is
deallocated

It's not too complicated!

Updated shared counter program

Definition of Shared struct type:

typedef struct {
volatile int count;
pthread_mutex_t lock;
} Shared;

Definition of the worker function:

void *worker(void *arg) {
Shared *obj = arg;
for (int i = 0; i < NUM_INCR/NTHREADS; i++) {
pthread_mutex_lock(&obj->lock) ;
obj->count++;
pthread_mutex_unlock(&obj->lock) ;
X
return NULL;
}

Updated shared counter program

Main function:

int main(void) {

Shared *obj = calloc(l, sizeof(Shared));

pthread_mutex_init(&obj->lock, NULL);

pthread_t threads [NTHREADS] ;

for (int i = 0; i < NTHREADS; i++)
pthread_create(&threads[i], NULL, worker, obj);

for (int i = 0; i < NTHREADS; i++)
pthread_join(threads[i], NULL);

printf ("%d\n", obj->count);

pthread_mutex_destroy(&obj->lock) ;

return O;

Does it work?

Original version with lost update bug:

Does it work?

Original version with lost update bug:

$ time ./incr_race
52683607

real OmO. 142s
user Om0.276s
sys O0m0.000s

Fixed version using mutex:

Does it work?

Original version with lost update bug:

$ time ./incr_race
52683607

real OmO. 142s
user Om0.276s
sys O0m0.000s

Fixed version using mutex:

$ time ./incr_fixed
100000000

real Om10.262s
user Om13.210s
sys Om7.264s

Contention occurs when multiple threads try to access the same shared data
structure at the same time

Costs associated with synchronization:

Contention occurs when multiple threads try to access the same shared data
structure at the same time

Costs associated with synchronization:

1. Cost of entering and leaving critical section (e.g., locking and unlocking a
mutex)

Contention occurs when multiple threads try to access the same shared data
structure at the same time

Costs associated with synchronization:

1. Cost of entering and leaving critical section (e.g., locking and unlocking a
mutex)

2. Reduced parallelism due to threads having to take turns (when contending
for access to shared data)

Contention occurs when multiple threads try to access the same shared data
structure at the same time

Costs associated with synchronization:

1. Cost of entering and leaving critical section (e.g., locking and unlocking a
mutex)

2. Reduced parallelism due to threads having to take turns (when contending
for access to shared data)

3. Cost of OS kernel code to suspend and resume threads as they wait to
enter critical sections

Contention occurs when multiple threads try to access the same shared data
structure at the same time

Costs associated with synchronization:

1. Cost of entering and leaving critical section (e.g., locking and unlocking a
mutex)

2. Reduced parallelism due to threads having to take turns (when contending
for access to shared data)

3. Cost of OS kernel code to suspend and resume threads as they wait to
enter critical sections

These costs can be significant! Best performance occurs when threads
synchronize relatively infrequently

» Shared counter example is a pathological case

Guard objects

» In C++, we can use guard objects to create critical sections
» A guard object has a reference to a mutex
» lts constructor locks the mutex
» Its destructor unlocks the mutex
» The lifetime of the guard object is the extent of the critical section
» Guarantees that the mutex will be released
» Avoids deadlocks due to mutex not being released (e.g., because of

control flow, an exception, etc.)
» More about this next time

Guard object implementation

class Guard {
public:
Guard (pthread_mutex_t &lock)
: lock(lock) {
pthread_mutex_lock(&lock) ;
}

~Guard() {
pthread_mutex_unlock(&lock) ;
}

private:

Guard(const Guard &);

Guard &operator=(const Guard &);
pthread_mutex_t &lock;

+;

Using a guard object to define a critical section

// Assume m_lock is a mutezx

{
Guard g(m_lock);
// beginning of critical section

// ...code of critical section...

// end of critical section

3

Note: the braces are important, because they define the scope (and lifetime)
of the guard object!

Clicker quiz!

Clicker quiz omitted from public slides

Clicker quiz!

Clicker quiz omitted from public slides

A semaphore is a more general synchronization construct, invented by Edsger
Dijkstra in the early 1960s

When created, semaphore is initialized with a nonnegative integer count value

Two operations:

» P (“proberen”): waits until the semaphore has a non-zero value, then
decrements the count by one

» V (“verhogen”): increments the count by one, waking up a thread waiting
to perform a P operation if appropriate

A mutex can be modeled as a semaphore whose initial value is 1

Semaphores in pthreads

Include the <semaphore.h> header file
Semaphore data type is sem_t

Functions:
» sem_init: initialize a semaphore with specified initial count
» sem_destroy: destroy a semaphore when no longer needed
» sem_wait: wait and decrement (P)
» sem_post: increment and wake up waiting thread (V)

Semaphore applications

Semaphores are useful for managing access to a limited resource

Example: limiting maximum number of threads in a server application
» |nitialize semaphore with desired maximum number of threads
» Use P operation before creating a client thread

» Use V operation when client thread finishes

Semaphore applications

Example: bounded queue
» Initially empty, can have up to a fixed maximum number of elements
» When enqueuing an item, thread waits until queue is not full

» When dequeuing an item, thread waits until queue is not empty

Implementation: two semaphores and one mutex
» slots semaphore: tracks how many slots are available
» jtems semaphore: tracks how many elements are present

» Mutex is used for critical sections accessing queue data structure

Bounded queue data structure

Bounded queue of generic (void *) pointers

Bounded queue data type:

typedef struct {
void **data;
unsigned max_items, head, tail;
sem_t slots, items;
pthread_mutex_t lock;

} BoundedQueue;

Bounded queue operations:

BoundedQueue *bqueue_create(unsigned max_items);
void bqueue_destroy(BoundedQueue *bq);

void bqueue_enqueue (BoundedQueue *bqg, void *item);
void *bqueue_dequeue (BoundedQueue *bq) ;

Creating bounded queue

The slots semaphore initialized with max number of items, and items
semaphore initialized to 0

BoundedQueue *bqueue_create(unsigned max_items) {
BoundedQueue *bq = malloc(sizeof (BoundedQueue)) ;
bg->data = malloc(max_items * sizeof(void *));
bg->max_items = max_items;
bg->head = bg->tail = O;
sem_init(&bg->slots, 0, max_items);
sem_init(&bg->items, 0, 0);
pthread mutex_init (&bg->lock, NULL);
return bq;

Enqueuing an item

Slots decreases (must wait until nonzero before new item can be added),
items increases

Queue implemented as a “circular” array of pointers: head refers to where
next item will be added, tail refers to where next item will be removed

void bqueue_enqueue (BoundedQueue *bq, void *item) {
sem_wait (&bg->slots); /* wait for empty slot */
pthread_mutex_lock(&bg->lock) ;
bg->datal[bg->head] = item;
bg->head = (bg->head + 1) % bg->max_items;
pthread_mutex_unlock(&bg->lock);
sem_post (&bg->items) ; /* item is available */

Dequeuing an item

Items decreases (must wait until nonzero before item can be removed), slots
increases

void *bqueue_dequeue(BoundedQueue *bq) {
sem_wait (&bg->items) ; /* wait for item */
pthread_mutex_lock(&bg->lock) ;
void *item = bgq->datalbgq->taill;
bg->tail = (bg->tail + 1) I bg->max_items;
pthread_mutex_unlock(&bg->lock) ;
sem_post (&bg->slots); /* empty slot is available */
return item;

Queues are useful!

Synchronized queues are extremely useful in multithreaded programs!

Queues are useful!

Synchronized queues are extremely useful in multithreaded programs!

In particular they are useful for producer/consumer relationships between
threads

Queues are useful!

Synchronized queues are extremely useful in multithreaded programs!

In particular they are useful for producer/consumer relationships between
threads

» Producer enqueues items

Queues are useful!

Synchronized queues are extremely useful in multithreaded programs!

In particular they are useful for producer/consumer relationships between
threads

» Producer enqueues items

» Consumer dequeues items

Queues are useful!

Synchronized queues are extremely useful in multithreaded programs!

In particular they are useful for producer/consumer relationships between
threads
» Producer enqueues items
» Consumer dequeues items
» Bounded queue: ensures that producer doesn't get too far ahead of
consumer

Queues are useful!

Synchronized queues are extremely useful in multithreaded programs!

In particular they are useful for producer/consumer relationships between
threads

» Producer enqueues items
» Consumer dequeues items

» Bounded queue: ensures that producer doesn't get too far ahead of
consumer

More generally, a queue can be used to send a message to another thread

Creating threads incurs some overhead

Prethreading: program creates a fixed number of threads ahead of time,
assigns work to them as it becomes available

Queues are an ideal mechanism to allow the “supervisor” thread to send work
to the worker threads

A queue can also be used for messages sent from the workers back to the
supervisor thread

Conway'’s game of life

.

-

-

» Grid-based cellular automaton, cells are alive (1) or dead (0)
» Live cells with 2 or 3 live neighbors survive

» Dead cells with 3 live neighbors become alive

» Otherwise, cell dies (or stays dead)

» Over many generations, complex patterns can emerge

Sequential computation

Grid data type:

typedef struct {
unsigned nrows, ncols;
char *cur_buf, *next_buf;
} Grid;
Two buffers, one for current generation, one for next generation (swap after
each generation is simulated)

Sequential computation function:

void life_compute_next(Grid *grid, unsigned start_row,
unsigned end_row);

Updates cells in next generation for specified range of grid rows

Sequential computation

Simulating specified number of generations:
for (unsigned i = 0; i < num_gens; i++) {
life_compute_next(grid, 1, grid->nrows - 1);
grid_flip(grid);
}

Note that border cells are never updated (and are always 0)

Parallel computation (strategy)

Conway'’s game of life is not quite an embarrassingly parallel computation

» Computation of generation n must finish before computation of
generation n+ 1 can start

Parallel computation (strategy)

Conway'’s game of life is not quite an embarrassingly parallel computation

» Computation of generation n must finish before computation of
generation n+ 1 can start

Could start a new batch of worker threads each generation
» But we'll repeatedly pay the thread startup and teardown costs

Parallel computation (strategy)

Conway'’s game of life is not quite an embarrassingly parallel computation

» Computation of generation n must finish before computation of
generation n+ 1 can start

Could start a new batch of worker threads each generation
» But we'll repeatedly pay the thread startup and teardown costs

Prethreading approach:

Parallel computation (strategy)

Conway'’s game of life is not quite an embarrassingly parallel computation

» Computation of generation n must finish before computation of
generation n+ 1 can start

Could start a new batch of worker threads each generation
» But we'll repeatedly pay the thread startup and teardown costs

Prethreading approach:
» Create fixed set of worker threads

Parallel computation (strategy)

Conway'’s game of life is not quite an embarrassingly parallel computation

» Computation of generation n must finish before computation of
generation n+ 1 can start

Could start a new batch of worker threads each generation
» But we'll repeatedly pay the thread startup and teardown costs

Prethreading approach:
» Create fixed set of worker threads

» “Command queue” allows supervisor thread to send tasks to the workers

Parallel computation (strategy)

Conway'’s game of life is not quite an embarrassingly parallel computation

» Computation of generation n must finish before computation of
generation n+ 1 can start

Could start a new batch of worker threads each generation
» But we'll repeatedly pay the thread startup and teardown costs

Prethreading approach:
» Create fixed set of worker threads
» “Command queue” allows supervisor thread to send tasks to the workers

» “Done queue” allows workers to notify supervisor thread when tasks are
finished

Parallel computation (implementation)

Work data type, has queues and main Grid data structure

typedef struct {
BoundedQueue *cmd_queue;
BoundedQueue *done_queue;
Grid *grid;

} Work;

Task data type, represents a range of grid rows for a worker to update

typedef struct {
unsigned start_row, end_row;
} Task;

Parallel computation (implementation)

worker function, executed by each worker thread:

void *worker(void *arg) {
Work *w = arg;

while (1) {
Task *t = bqueue_dequeue(w->cmd_queue) ;
if (t->end_row == 0) { break; }

/* do sequential computation */
life_compute_next (w->grid, t->start_row, t->end_row);

/* inform main thread that task is done */

bqueue_enqueue (w->done_queue, t);

return NULL;
}

Parallel computation (implementation)

Supervisor thread:

Work w = { bqueue_create (NUM_THREADS), bqueue_create(NUM_THREADS), grid };
pthread_t threads[NUM_THREADS] ;
for (unsigned i = 0; i < NUM_THREADS; i++) {
pthread_create(&threads[i], NULL, worker, &w);
}

for (unsigned i = 0; i < num_gens; i++) { /* simulation loop */
distribute_work(&w, 0);
wait_until_done (&w) ;
grid_flip(grid);

}

distribute_work(&w, 1); /* send shutdown message */

for (unsigned i = 0; i < NUM_THREADS; i++) { /* wait for workers to finish */

pthread_join(threads[i], NULL);
}

Parallel computation (implementation)

Distributing work:

void distribute_work(Work *w, int domne) {

unsigned rows_per_thread = (w->grid->nrows - 2) / NUM_THREADS;

for (unsigned i = 0; i < NUM_THREADS; i++) {

Task *task = malloc(sizeof(Task));

if (dome) {
task->end_row = O;

} else {
task->start_row = 1 + (i*rows_per_thread);
if (i == NUM_THREADS-1) { task->end_row =

else { task->end_row =

bqueue_enqueue (w->cmd_queue, task);
}
}

w->grid->nrows - 1; }
task->start_row + rows_per_thread; }

Parallel computation (implementation)

Waiting for workers to finish their tasks:

void wait_until_done (Work *w) {
for (unsigned i = 0; i < NUM_THREADS; i++) {
Task *t = bqueue_dequeue (w->done_queue) ;
free(t);
}
}

Sequential vs. parallel

Using a 1000x1000 cell input, 10,000 generations, sequential vs. parallel with
4 worker threads, on a Core i5-3320M (dual core, hyperthreaded):

$./life_seq board.txt 10000 out10000.txt
Computation finished in 59007 ms

$./life_par board.txt 10000 out10000par.txt
Computation finished in 32208 ms

$ diff out10000.txt outl10000par.txt

no output

We got about a 2x speedup using four threads

Relatively large chunks of work were assigned

» Costs of synchronization amortized over relatively large amounts of
sequential computation done by worker threads

Queues are an effective mechanism for communication between threads

	Semaphores and mutexes

