Lecture 31: Concurrency issues

David Hovemeyer

April 20, 2026

601.229 Computer Systems Fundamentals

=N

S il:,’

» Deadlocks

» Condition variables

» Amdahl’s Law

» Atomic machine instructions, lock free data structures

Code examples on web page: synch2.zip

Deadlocks

Modified shared counter program

// Data structure
typedef struct {
volatile int count;
pthread_mutex_t lock, lock2;
} Shared;

// thread 1 critical section
pthread_mutex_lock(&obj->lock) ;
pthread_mutex_lock(&obj->lock2) ;
obj—>count++;
pthread_mutex_unlock(&obj->lock2) ;
pthread_mutex_unlock(&obj->1lock) ;

// thread 2 critical section
pthread_mutex_lock(&obj->lock2) ;
pthread_mutex_lock(&obj->lock) ;
obj->count++;
pthread_mutex_unlock(&obj->lock) ;
pthread_mutex_unlock(&obj->lock2) ;

Modified shared counter program

‘Acquire obj->lock, then obj->lock?2 ‘

// Data structure
typedef struct {
volatile int count;
pthread_mutex_t lock, lock2;
} Shared;

// thread 1 critical section
pthread_mutex_lock(&obj->lock) ;
pthread_mutex_lock(&obj->lock2) ;
obj->count++;
pthread_mutex_unlock(&obj->lock2) ;
pthread_mutex_unlock(&obj->lock) ;

// thread 2 critical section
pthread_mutex_lock(&obj->lock2) ;
pthread_mutex_lock(&obj->lock);
obj—>count++;
pthread_mutex_unlock(&obj->lock) ;
pthread_mutex_unlock(&obj->lock2);

Modified shared counter program

‘Acquire obj->lock2, then obj—>lock‘

// Data structure
typedef struct {
volatile int count;
pthread_mutex_t lock, lock2;
} Shared;

// thread 1 critical section
pthread_mutex_lock(&obj->lock);
pthread_mutex_lock(&obj->lock2) ;
obj->count++;
pthread_mutex_unlock(&obj->lock2) ;
pthread_mutex_unlock(&obj->lock) ;

// thread 2 critical section
pthread_mutex_lock(&obj->lock2) ;
pthread_mutex_lock(&obj->lock);
obj->count++;
pthread_mutex_unlock(&obj->1lock) ;
pthread_mutex_unlock(&obj->lock2) ;

Running the program

$ make incr_deadlock

gcc -Wall -Wextra -pedantic -std=gnull -02 -c incr_deadlock.c
gcc —o incr_deadlock incr_deadlock.o -lpthread

$./incr _deadlock

hangs indefinitely...

Deadlock

Use of blocking synchronization constructs such as semaphores and mutexes
can lead to deadlock

In the previous example:

Deadlock

Use of blocking synchronization constructs such as semaphores and mutexes
can lead to deadlock

In the previous example:
» Thread 1 acquires obj->1lock and waits to acquire obj—>1lock2

Deadlock

Use of blocking synchronization constructs such as semaphores and mutexes
can lead to deadlock

In the previous example:
» Thread 1 acquires obj->1lock and waits to acquire obj—>1lock2
» Thread 2 acquires obj->1lock2 and waits to acqurie obj->lock

Deadlock

Use of blocking synchronization constructs such as semaphores and mutexes
can lead to deadlock

In the previous example:
» Thread 1 acquires obj->1lock and waits to acquire obj—>1lock2
» Thread 2 acquires obj->1lock2 and waits to acqurie obj->lock

Neither thread can make progress!

Resource allocation graph

Resource allocation graph:

Resource allocation graph

Resource allocation graph:
» Nodes represent threads and lockable resources

Resource allocation graph

Resource allocation graph:
» Nodes represent threads and lockable resources
» Edges between threads and resources

Resource allocation graph

Resource allocation graph:
» Nodes represent threads and lockable resources
» Edges between threads and resources

» Edge from resource to thread: thread has locked the resource

Resource allocation graph

Resource allocation graph:
» Nodes represent threads and lockable resources
» Edges between threads and resources
» Edge from resource to thread: thread has locked the resource
» Edge from thread to resource: thread is waiting to lock the resource

Resource allocation graph

Resource allocation graph:
» Nodes represent threads and lockable resources
» Edges between threads and resources
» Edge from resource to thread: thread has locked the resource
» Edge from thread to resource: thread is waiting to lock the resource

Cycle indicates a deadlock

Deadlock situation

Thread 1 Thread 2

Avoiding deadlocks

Deadlocks can only occur if

Avoiding deadlocks

Deadlocks can only occur if

» threads attempt to acquire multiple locks simultaneously, and

Avoiding deadlocks

Deadlocks can only occur if
» threads attempt to acquire multiple locks simultaneously, and

» there is not a globally-consistent lock acquisition order

Avoiding deadlocks

Deadlocks can only occur if
» threads attempt to acquire multiple locks simultaneously, and

» there is not a globally-consistent lock acquisition order

Trivially, if threads only acquire one lock at a time, deadlocks can't occur

Maintaining a consistent lock acquisition order also works

Clicker quiz!

Clicker quiz omitted from public slides

Clicker quiz!

Clicker quiz omitted from public slides

Trivial self-deadlock

Can you spot the error in the following critical section?
pthread_mutex_lock(&obj->lock) ;
obj—>count++;
pthread_mutex_lock(&obj->lock) ;

Trivial self-deadlock

Can you spot the error in the following critical section?

pthread_mutex_lock(&obj->lock) ;
obj—>count++;
pthread_mutex_lock(&obj->lock) ;

This mistake is easy to make because pthread_mutex_lock and
pthread mutex_unlock have very similar names

Less trivial self-deadlock

Another type of self-deadlock can occur if multiple functions have critical
sections, and one calls another:

void funcl(Shared *obj) {
pthread_mutex_lock(&obj->lock) ;
// critical section...

pthread_mutex_unlock(&obj->lock);
}

void func2(Shared *obj) {
pthread_mutex_lock(&obj->lock) ;
// another critical section...
func1(obj);
pthread_mutex_unlock(&obj->lock);

Avoiding self-deadlock

A good approach to avoiding self-deadlock is:
» avoid acquiring locks in helper functions

» make “higher-level” functions (often, the “public” API functions of the
locked data structure) responsible for acquiring locks

Example:
void highlevel_fn(Shared *obj) {
pthread_mutex_lock(&obj->lock) ;
helper(obj);
pthread_mutex_unlock(&obj->lock) ;
}

void helper(Shared *obj) {
// critical section...

¥

Condition variables

Condition variables

Condition variables are another type of synchronization construct supported

by pthreads

They allow threads to wait for a condition to become true: for example,
» Wait for queue to become non-empty
» Wait for queue to become non-full
» etc.

They work in conjunction with a mutex

Condition variable API

Data type: pthread_cond_t

Functions:
» pthread cond_init: initialize a condition variable
» pthread_cond_destroy: destroy a condition variable

» pthread cond_wait: wait on a condition variable, unlocking mutex (so
other threads can enter critical sections)

» pthread_cond_broadcast: wake up waiting threads because condition
may have been enabled

Bounded queue example

BoundedQueue data type:

typedef struct {
void **data;
unsigned max_items, count, head, tail;
pthread_mutex_t lock;
pthread_cond_t not_empty, not_full;
} BoundedQueue;

Creating a BoundedQueue:

BoundedQueue *bqueue_create(unsigned max_items) {
BoundedQueue *bq = malloc(sizeof (BoundedQueue)) ;
bg->data = malloc(max_items * sizeof (void *));
bg->max_items = max_items;
bg->count = bg->head = bg->tail = O;
pthread_mutex_init(&bg->lock, NULL);
pthread_cond_init (&bg->not_full, NULL);
pthread_cond_init (&bg->not_empty, NULL);
return bq;

Bounded queue example

Enqueuing an item:

void bqueue_enqueue (BoundedQueue *bqg, void *item) {
pthread_mutex_lock(&bg->lock) ;

while (bg->count >= bg->max_items) {
pthread_cond_wait (&bg->not_full, &bg->lock);

}

bg->datal[bg->head] = item;

bg->head = (bg->head + 1) % bg->max_items;

bg->count++;

pthread_cond_broadcast (&bg->not_empty) ;

pthread_mutex_unlock(&bg->lock) ;

Bounded queue example

Enqueuing an item: ‘Acquire mutex ‘
void bqueue_enqueue (BoundedQueue *bqg, void *item) {
pthread_mutex_lock(&bg->lock) ;

while (bg->count >= bg->max_items) {
pthread_cond_wait (&bg->not_full, &bg->lock);
}

bg->datal[bg->head] = item;
bg->head = (bg->head + 1) % bg->max_items;
bg->count++;

pthread_cond_broadcast (&bg->not_empty) ;

pthread_mutex_unlock(&bg->lock) ;

Bounded queue example

Enqueuing an item:

void bqueue_enqueue (BoundedQueue *bq, void *item) { |Wait for queue to
pthread_mutex_lock(&bg->lock); become non-full

while (bg->count >= bg->max_items) {
pthread_cond_wait (&bg->not_full, &bg->lock);
}

bg->datal[bg->head] = item;
bg->head = (bg->head + 1) % bg->max_items;
bg->count++;

pthread_cond_broadcast (&bg->not_empty) ;

pthread_mutex_unlock(&bg->lock) ;

Bounded queue example

Enqueuing an item:

void bqueue_enqueue (BoundedQueue *bqg, void *item) {
pthread_mutex_lock(&bg->lock) ;

while (bg->count >= bg->max_items) {
pthread_cond_wait (&bg->not_full, &bg->lock); Add item to

¥ queue

bg->datal[bg->head] = item;
bg->head = (bg->head + 1) % bg->max_items;
bg->count++;

pthread_cond_broadcast (&bg->not_empty) ;

pthread_mutex_unlock(&bg->lock) ;

Bounded queue example

Enqueuing an item:

void bqueue_enqueue (BoundedQueue *bqg, void *item) {
pthread_mutex_lock(&bg->lock) ;

while (bg->count >= bg->max_items) {
pthread_cond_wait (&bg->not_full, &bg->lock);

}

bg->data[bq->head] = item; Wake up threads
bg->head = (bg->head + 1) % bg->max_items; waiting for queue
bg->count++; to be non-empty

pthread_cond_broadcast (&bg->not_empty) ;

pthread_mutex_unlock(&bg->lock) ;

Bounded queue example

Enqueuing an item:

void bqueue_enqueue (BoundedQueue *bqg, void *item) {
pthread_mutex_lock(&bg->lock) ;

while (bg->count >= bg->max_items) {
pthread_cond_wait (&bg->not_full, &bg->lock);
}

bg->datal[bg->head] = item;
bg->head = (bg->head + 1) % bg->max_items;
bg->count++;

pthread_cond_broadcast (&bg->not_empty) ; “?deasernutex

pthread_mutex_unlock(&bg->lock) ;

Using condition variables

Principles for using condition variables:

Using condition variables

Principles for using condition variables:
» Each condition variable must be associated with a mutex

Using condition variables

Principles for using condition variables:
» Each condition variable must be associated with a mutex

» Multiple condition variables can be associated with the same mutex

Using condition variables

Principles for using condition variables:
» Each condition variable must be associated with a mutex
» Multiple condition variables can be associated with the same mutex
» The mutex must be locked when waiting on a condition variable

» pthread cond_wait releases the mutex, then reacquires it when the
wait is ended (by another thread doing a broadcast)

Using condition variables

Principles for using condition variables:
» Each condition variable must be associated with a mutex
» Multiple condition variables can be associated with the same mutex
» The mutex must be locked when waiting on a condition variable
» pthread cond_wait releases the mutex, then reacquires it when the
wait is ended (by another thread doing a broadcast)
» pthread cond_wait must be done in a loop!

» Spurious wakeups are possible, so waited-for condition must be
re-checked

Using condition variables

Principles for using condition variables:
» Each condition variable must be associated with a mutex
» Multiple condition variables can be associated with the same mutex
» The mutex must be locked when waiting on a condition variable
» pthread cond_wait releases the mutex, then reacquires it when the
wait is ended (by another thread doing a broadcast)
» pthread cond_wait must be done in a loop!
» Spurious wakeups are possible, so waited-for condition must be
re-checked

» Use pthread_cond_broadcast whenever a condition might have been
enabled

Amdahl’'s Law

Let's say you're parallelizing a computation: goal is to make the computation
complete as fast as possible

Say that t; is the sequential running time, and t, is the parallel running time
Speedup (denoted S) is t,/t,

E.g., say that t; is 10 and t, is 2, then $ =10/2 =5

Maximum speedup

Let P be the number of processor cores
In theory, speedup S cannot be greater than P

So, in the ideal case,
S=P=t/t,

implying that
t, =ts/P

Maximum speedup

Let P be the number of processor cores
In theory, speedup S cannot be greater than P

So, in the ideal case,
S=P=t/t,

implying that
t, =ts/P
Note that limp_,o ts/P is 0

» Meaning that throwing an arbitrary number of cores at a computation
should improve performance by an arbitrary factor

» That would be great!

When speedup S = P, we have perfect scalability

This is difficult to achieve in practice because parallel computations generally
have some sequential overhead which cannot be (easily) parallelized:

» Divide up work

» Synchronization overhead

» Combining solutions to subproblems
> etc.

Amdahl’'s Law

Say that, for some computational problem, the proportions of inherently
sequential and parallelizable computation are ws and w,, respectively

Note that ws +w, = 1,50 wp, =1 — w;

Normalized sequential execution time ts:
ts=1=ws+w,

Parallel execution time using P cores:

w, 1—w
p s
7_—W5—|—

=Wt p P

Amdahl’'s Law

Speedup using P cores:

sob_ 1
tp ows+ 1%
AsP%oo,l’—,;"’S—>0,so
1
S— —
Ws

Let's say wg = .05: maximum speedup is 1/.05 = 20
» This is regardless of how many cores we use!

Gustafson-Barsis's Law

Amdahl’s Law assumes that the proportion of inherently sequential
computation (ws) is independent of the problem size

Gustafson-Barsis's Law: for some important computations, the proportion of
parallelizable computation scales with the problem size

» These are called scalable computations

» Such computations can realize speedups proportional to P for a large
number of processors

Atomic machine instructions

We noted previously that incrementing an integer variable (obj->count++) is
not atomic

However, modern processors typically support atomic machine instructions

» These are atomic even when used on shared variables by multiple threads

Various ways to use these:
» Assembly language
» Compiler intrinsics

» Language support

Atomic machine instructions

Typical examples of atomic machine instructions:
» Increment
» Decrement
» Exchange (swap contents of two variables)
>

Compare and swap (compare register and variable, if equal, swap
variable's contents with another value)

v

Load linked /store conditional (load from variable, store back to variable
only if variable wasn't updated concurrently)

Atomic increment in x86-64

x86-64 memory instructions can have a lock prefix to guarantee atomicity, e.g.:

.globl atomic_increment
atomic_increment:

lock; incl (%rdi)

ret

Calling from C code:
void atomic_increment(volatile int *p);
atomic_increment (&obj->count) ;

See incr_atomic.c and atomic.S

Atomic increment using gcc intrinsics

gcc has a number of intrinsic functions for atomic operations

E.g., atomic increment:
__atomic_fetch_add(&obj->count, 1, __ATOMIC_ACQ_REL);

See incr_atomic2.c

Atomic increment using C11 _Atomic

The C11 standard introduces the _Atomic type qualifier

Defining shared counter type:

typedef struct {
_Atomic int count;
} Shared;

Incrementing the shared counter:

obj->count++;

See incr_atomic3.c

Lock-free data structures

Atomic machine instructions can be the basis for lock-free data structures

Basic ideas:

» Data structure must always be in a valid state!

» Transactional: mutators speculatively create a proposed update and
attempt to commit it using compare-and-swap (or load linked/ store
conditional)

» Retry transaction if another thread committed an update concurrently,
invalidating proposed update

Issue: waits and wake-ups are not really possible

» E.g., when trying to dequeue from an empty queue, can't easily wait for
item to be available, calling thread must spin

	Deadlocks
	Condition variables
	Amdahl's Law
	Atomic machine instructions

