
Lecture 31: Concurrency issues

David Hovemeyer

April 20, 2026

601.229 Computer Systems Fundamentals

Outline

▶ Deadlocks
▶ Condition variables
▶ Amdahl’s Law
▶ Atomic machine instructions, lock free data structures

Code examples on web page: synch2.zip

Deadlocks

Modified shared counter program

// Data structure
typedef struct {

volatile int count;
pthread_mutex_t lock, lock2;

} Shared;
// thread 1 critical section
pthread_mutex_lock(&obj->lock);
pthread_mutex_lock(&obj->lock2);
obj->count++;
pthread_mutex_unlock(&obj->lock2);
pthread_mutex_unlock(&obj->lock);

// thread 2 critical section
pthread_mutex_lock(&obj->lock2);
pthread_mutex_lock(&obj->lock);
obj->count++;
pthread_mutex_unlock(&obj->lock);
pthread_mutex_unlock(&obj->lock2);

Modified shared counter program

// Data structure
typedef struct {

volatile int count;
pthread_mutex_t lock, lock2;

} Shared;
// thread 1 critical section
pthread_mutex_lock(&obj->lock);
pthread_mutex_lock(&obj->lock2);
obj->count++;
pthread_mutex_unlock(&obj->lock2);
pthread_mutex_unlock(&obj->lock);

// thread 2 critical section
pthread_mutex_lock(&obj->lock2);
pthread_mutex_lock(&obj->lock);
obj->count++;
pthread_mutex_unlock(&obj->lock);
pthread_mutex_unlock(&obj->lock2);

Acquire obj->lock, then obj->lock2

Modified shared counter program

// Data structure
typedef struct {

volatile int count;
pthread_mutex_t lock, lock2;

} Shared;
// thread 1 critical section
pthread_mutex_lock(&obj->lock);
pthread_mutex_lock(&obj->lock2);
obj->count++;
pthread_mutex_unlock(&obj->lock2);
pthread_mutex_unlock(&obj->lock);

// thread 2 critical section
pthread_mutex_lock(&obj->lock2);
pthread_mutex_lock(&obj->lock);
obj->count++;
pthread_mutex_unlock(&obj->lock);
pthread_mutex_unlock(&obj->lock2);

Acquire obj->lock2, then obj->lock

Running the program

$ make incr_deadlock
gcc -Wall -Wextra -pedantic -std=gnu11 -O2 -c incr_deadlock.c
gcc -o incr_deadlock incr_deadlock.o -lpthread
$./incr_deadlock
hangs indefinitely...

Deadlock

Use of blocking synchronization constructs such as semaphores and mutexes
can lead to deadlock

In the previous example:

▶ Thread 1 acquires obj->lock and waits to acquire obj->lock2
▶ Thread 2 acquires obj->lock2 and waits to acqurie obj->lock

Neither thread can make progress!

Deadlock

Use of blocking synchronization constructs such as semaphores and mutexes
can lead to deadlock

In the previous example:
▶ Thread 1 acquires obj->lock and waits to acquire obj->lock2

▶ Thread 2 acquires obj->lock2 and waits to acqurie obj->lock

Neither thread can make progress!

Deadlock

Use of blocking synchronization constructs such as semaphores and mutexes
can lead to deadlock

In the previous example:
▶ Thread 1 acquires obj->lock and waits to acquire obj->lock2
▶ Thread 2 acquires obj->lock2 and waits to acqurie obj->lock

Neither thread can make progress!

Deadlock

Use of blocking synchronization constructs such as semaphores and mutexes
can lead to deadlock

In the previous example:
▶ Thread 1 acquires obj->lock and waits to acquire obj->lock2
▶ Thread 2 acquires obj->lock2 and waits to acqurie obj->lock

Neither thread can make progress!

Resource allocation graph

Resource allocation graph:

▶ Nodes represent threads and lockable resources
▶ Edges between threads and resources
▶ Edge from resource to thread: thread has locked the resource
▶ Edge from thread to resource: thread is waiting to lock the resource

Cycle indicates a deadlock

Resource allocation graph

Resource allocation graph:
▶ Nodes represent threads and lockable resources

▶ Edges between threads and resources
▶ Edge from resource to thread: thread has locked the resource
▶ Edge from thread to resource: thread is waiting to lock the resource

Cycle indicates a deadlock

Resource allocation graph

Resource allocation graph:
▶ Nodes represent threads and lockable resources
▶ Edges between threads and resources

▶ Edge from resource to thread: thread has locked the resource
▶ Edge from thread to resource: thread is waiting to lock the resource

Cycle indicates a deadlock

Resource allocation graph

Resource allocation graph:
▶ Nodes represent threads and lockable resources
▶ Edges between threads and resources
▶ Edge from resource to thread: thread has locked the resource

▶ Edge from thread to resource: thread is waiting to lock the resource

Cycle indicates a deadlock

Resource allocation graph

Resource allocation graph:
▶ Nodes represent threads and lockable resources
▶ Edges between threads and resources
▶ Edge from resource to thread: thread has locked the resource
▶ Edge from thread to resource: thread is waiting to lock the resource

Cycle indicates a deadlock

Resource allocation graph

Resource allocation graph:
▶ Nodes represent threads and lockable resources
▶ Edges between threads and resources
▶ Edge from resource to thread: thread has locked the resource
▶ Edge from thread to resource: thread is waiting to lock the resource

Cycle indicates a deadlock

Deadlock situation

Avoiding deadlocks

Deadlocks can only occur if

▶ threads attempt to acquire multiple locks simultaneously, and
▶ there is not a globally-consistent lock acquisition order

Trivially, if threads only acquire one lock at a time, deadlocks can’t occur

Maintaining a consistent lock acquisition order also works

Avoiding deadlocks

Deadlocks can only occur if
▶ threads attempt to acquire multiple locks simultaneously, and

▶ there is not a globally-consistent lock acquisition order

Trivially, if threads only acquire one lock at a time, deadlocks can’t occur

Maintaining a consistent lock acquisition order also works

Avoiding deadlocks

Deadlocks can only occur if
▶ threads attempt to acquire multiple locks simultaneously, and
▶ there is not a globally-consistent lock acquisition order

Trivially, if threads only acquire one lock at a time, deadlocks can’t occur

Maintaining a consistent lock acquisition order also works

Avoiding deadlocks

Deadlocks can only occur if
▶ threads attempt to acquire multiple locks simultaneously, and
▶ there is not a globally-consistent lock acquisition order

Trivially, if threads only acquire one lock at a time, deadlocks can’t occur

Maintaining a consistent lock acquisition order also works

Clicker quiz!

Clicker quiz omitted from public slides

Clicker quiz!

Clicker quiz omitted from public slides

Trivial self-deadlock

Can you spot the error in the following critical section?
pthread_mutex_lock(&obj->lock);
obj->count++;
pthread_mutex_lock(&obj->lock);

This mistake is easy to make because pthread_mutex_lock and
pthread_mutex_unlock have very similar names

Trivial self-deadlock

Can you spot the error in the following critical section?
pthread_mutex_lock(&obj->lock);
obj->count++;
pthread_mutex_lock(&obj->lock);

This mistake is easy to make because pthread_mutex_lock and
pthread_mutex_unlock have very similar names

Less trivial self-deadlock

Another type of self-deadlock can occur if multiple functions have critical
sections, and one calls another:

void func1(Shared *obj) {
pthread_mutex_lock(&obj->lock);
// critical section...
pthread_mutex_unlock(&obj->lock);

}

void func2(Shared *obj) {
pthread_mutex_lock(&obj->lock);
// another critical section...
func1(obj);
pthread_mutex_unlock(&obj->lock);

}

Avoiding self-deadlock

A good approach to avoiding self-deadlock is:
▶ avoid acquiring locks in helper functions
▶ make “higher-level” functions (often, the “public” API functions of the

locked data structure) responsible for acquiring locks

Example:
void highlevel_fn(Shared *obj) {

pthread_mutex_lock(&obj->lock);
helper(obj);
pthread_mutex_unlock(&obj->lock);

}

void helper(Shared *obj) {
// critical section...

}

Condition variables

Condition variables

Condition variables are another type of synchronization construct supported
by pthreads

They allow threads to wait for a condition to become true: for example,
▶ Wait for queue to become non-empty
▶ Wait for queue to become non-full
▶ etc.

They work in conjunction with a mutex

Condition variable API

Data type: pthread_cond_t

Functions:
▶ pthread_cond_init: initialize a condition variable
▶ pthread_cond_destroy: destroy a condition variable
▶ pthread_cond_wait: wait on a condition variable, unlocking mutex (so

other threads can enter critical sections)
▶ pthread_cond_broadcast: wake up waiting threads because condition

may have been enabled

Bounded queue example
BoundedQueue data type:

typedef struct {
void **data;
unsigned max_items, count, head, tail;
pthread_mutex_t lock;
pthread_cond_t not_empty, not_full;

} BoundedQueue;

Creating a BoundedQueue:
BoundedQueue *bqueue_create(unsigned max_items) {

BoundedQueue *bq = malloc(sizeof(BoundedQueue));
bq->data = malloc(max_items * sizeof(void *));
bq->max_items = max_items;
bq->count = bq->head = bq->tail = 0;
pthread_mutex_init(&bq->lock, NULL);
pthread_cond_init(&bq->not_full, NULL);
pthread_cond_init(&bq->not_empty, NULL);
return bq;

}

Bounded queue example

Enqueuing an item:
void bqueue_enqueue(BoundedQueue *bq, void *item) {

pthread_mutex_lock(&bq->lock);

while (bq->count >= bq->max_items) {
pthread_cond_wait(&bq->not_full, &bq->lock);

}

bq->data[bq->head] = item;
bq->head = (bq->head + 1) % bq->max_items;
bq->count++;

pthread_cond_broadcast(&bq->not_empty);

pthread_mutex_unlock(&bq->lock);
}

Bounded queue example

Enqueuing an item:
void bqueue_enqueue(BoundedQueue *bq, void *item) {

pthread_mutex_lock(&bq->lock);

while (bq->count >= bq->max_items) {
pthread_cond_wait(&bq->not_full, &bq->lock);

}

bq->data[bq->head] = item;
bq->head = (bq->head + 1) % bq->max_items;
bq->count++;

pthread_cond_broadcast(&bq->not_empty);

pthread_mutex_unlock(&bq->lock);
}

Acquire mutex

Bounded queue example

Enqueuing an item:
void bqueue_enqueue(BoundedQueue *bq, void *item) {

pthread_mutex_lock(&bq->lock);

while (bq->count >= bq->max_items) {
pthread_cond_wait(&bq->not_full, &bq->lock);

}

bq->data[bq->head] = item;
bq->head = (bq->head + 1) % bq->max_items;
bq->count++;

pthread_cond_broadcast(&bq->not_empty);

pthread_mutex_unlock(&bq->lock);
}

Wait for queue to
become non-full

Bounded queue example

Enqueuing an item:
void bqueue_enqueue(BoundedQueue *bq, void *item) {

pthread_mutex_lock(&bq->lock);

while (bq->count >= bq->max_items) {
pthread_cond_wait(&bq->not_full, &bq->lock);

}

bq->data[bq->head] = item;
bq->head = (bq->head + 1) % bq->max_items;
bq->count++;

pthread_cond_broadcast(&bq->not_empty);

pthread_mutex_unlock(&bq->lock);
}

Add item to
queue

Bounded queue example

Enqueuing an item:
void bqueue_enqueue(BoundedQueue *bq, void *item) {

pthread_mutex_lock(&bq->lock);

while (bq->count >= bq->max_items) {
pthread_cond_wait(&bq->not_full, &bq->lock);

}

bq->data[bq->head] = item;
bq->head = (bq->head + 1) % bq->max_items;
bq->count++;

pthread_cond_broadcast(&bq->not_empty);

pthread_mutex_unlock(&bq->lock);
}

Wake up threads
waiting for queue
to be non-empty

Bounded queue example

Enqueuing an item:
void bqueue_enqueue(BoundedQueue *bq, void *item) {

pthread_mutex_lock(&bq->lock);

while (bq->count >= bq->max_items) {
pthread_cond_wait(&bq->not_full, &bq->lock);

}

bq->data[bq->head] = item;
bq->head = (bq->head + 1) % bq->max_items;
bq->count++;

pthread_cond_broadcast(&bq->not_empty);

pthread_mutex_unlock(&bq->lock);
}

Release mutex

Using condition variables

Principles for using condition variables:

▶ Each condition variable must be associated with a mutex
▶ Multiple condition variables can be associated with the same mutex
▶ The mutex must be locked when waiting on a condition variable
▶ pthread_cond_wait releases the mutex, then reacquires it when the

wait is ended (by another thread doing a broadcast)
▶ pthread_cond_wait must be done in a loop!
▶ Spurious wakeups are possible, so waited-for condition must be

re-checked
▶ Use pthread_cond_broadcast whenever a condition might have been

enabled

Using condition variables

Principles for using condition variables:
▶ Each condition variable must be associated with a mutex

▶ Multiple condition variables can be associated with the same mutex
▶ The mutex must be locked when waiting on a condition variable
▶ pthread_cond_wait releases the mutex, then reacquires it when the

wait is ended (by another thread doing a broadcast)
▶ pthread_cond_wait must be done in a loop!
▶ Spurious wakeups are possible, so waited-for condition must be

re-checked
▶ Use pthread_cond_broadcast whenever a condition might have been

enabled

Using condition variables

Principles for using condition variables:
▶ Each condition variable must be associated with a mutex
▶ Multiple condition variables can be associated with the same mutex

▶ The mutex must be locked when waiting on a condition variable
▶ pthread_cond_wait releases the mutex, then reacquires it when the

wait is ended (by another thread doing a broadcast)
▶ pthread_cond_wait must be done in a loop!
▶ Spurious wakeups are possible, so waited-for condition must be

re-checked
▶ Use pthread_cond_broadcast whenever a condition might have been

enabled

Using condition variables

Principles for using condition variables:
▶ Each condition variable must be associated with a mutex
▶ Multiple condition variables can be associated with the same mutex
▶ The mutex must be locked when waiting on a condition variable
▶ pthread_cond_wait releases the mutex, then reacquires it when the

wait is ended (by another thread doing a broadcast)

▶ pthread_cond_wait must be done in a loop!
▶ Spurious wakeups are possible, so waited-for condition must be

re-checked
▶ Use pthread_cond_broadcast whenever a condition might have been

enabled

Using condition variables

Principles for using condition variables:
▶ Each condition variable must be associated with a mutex
▶ Multiple condition variables can be associated with the same mutex
▶ The mutex must be locked when waiting on a condition variable
▶ pthread_cond_wait releases the mutex, then reacquires it when the

wait is ended (by another thread doing a broadcast)
▶ pthread_cond_wait must be done in a loop!
▶ Spurious wakeups are possible, so waited-for condition must be

re-checked

▶ Use pthread_cond_broadcast whenever a condition might have been
enabled

Using condition variables

Principles for using condition variables:
▶ Each condition variable must be associated with a mutex
▶ Multiple condition variables can be associated with the same mutex
▶ The mutex must be locked when waiting on a condition variable
▶ pthread_cond_wait releases the mutex, then reacquires it when the

wait is ended (by another thread doing a broadcast)
▶ pthread_cond_wait must be done in a loop!
▶ Spurious wakeups are possible, so waited-for condition must be

re-checked
▶ Use pthread_cond_broadcast whenever a condition might have been

enabled

Amdahl’s Law

Speedup

Let’s say you’re parallelizing a computation: goal is to make the computation
complete as fast as possible

Say that ts is the sequential running time, and tp is the parallel running time

Speedup (denoted S) is ts/tp

E.g., say that ts is 10 and tp is 2, then S = 10/2 = 5

Maximum speedup

Let P be the number of processor cores

In theory, speedup S cannot be greater than P

So, in the ideal case,
S = P = ts/tp

implying that
tp = ts/P

Note that limP→∞ ts/P is 0
▶ Meaning that throwing an arbitrary number of cores at a computation

should improve performance by an arbitrary factor
▶ That would be great!

Maximum speedup

Let P be the number of processor cores

In theory, speedup S cannot be greater than P

So, in the ideal case,
S = P = ts/tp

implying that
tp = ts/P

Note that limP→∞ ts/P is 0
▶ Meaning that throwing an arbitrary number of cores at a computation

should improve performance by an arbitrary factor
▶ That would be great!

Reality

When speedup S = P, we have perfect scalability

This is difficult to achieve in practice because parallel computations generally
have some sequential overhead which cannot be (easily) parallelized:
▶ Divide up work
▶ Synchronization overhead
▶ Combining solutions to subproblems
▶ etc.

Amdahl’s Law

Say that, for some computational problem, the proportions of inherently
sequential and parallelizable computation are ws and wp, respectively

Note that ws + wp = 1, so wp = 1 − ws

Normalized sequential execution time ts :
ts = 1 = ws + wp

Parallel execution time using P cores:

tp = ws + wp
P = ws + 1 − ws

P

Amdahl’s Law

Speedup using P cores:
S = ts

tp
= 1

ws + 1−ws
P

As P → ∞, 1−ws
P → 0, so

S → 1
ws

Let’s say ws = .05: maximum speedup is 1/.05 = 20
▶ This is regardless of how many cores we use!

Gustafson-Barsis’s Law

Amdahl’s Law assumes that the proportion of inherently sequential
computation (ws) is independent of the problem size

Gustafson-Barsis’s Law: for some important computations, the proportion of
parallelizable computation scales with the problem size
▶ These are called scalable computations
▶ Such computations can realize speedups proportional to P for a large

number of processors

Atomic machine instructions

Atomicity

We noted previously that incrementing an integer variable (obj->count++) is
not atomic

However, modern processors typically support atomic machine instructions
▶ These are atomic even when used on shared variables by multiple threads

Various ways to use these:
▶ Assembly language
▶ Compiler intrinsics
▶ Language support

Atomic machine instructions

Typical examples of atomic machine instructions:
▶ Increment
▶ Decrement
▶ Exchange (swap contents of two variables)
▶ Compare and swap (compare register and variable, if equal, swap

variable’s contents with another value)
▶ Load linked/store conditional (load from variable, store back to variable

only if variable wasn’t updated concurrently)

Atomic increment in x86-64

x86-64 memory instructions can have a lock prefix to guarantee atomicity, e.g.:
.globl atomic_increment

atomic_increment:
lock; incl (%rdi)
ret

Calling from C code:
void atomic_increment(volatile int *p);

...

atomic_increment(&obj->count);

See incr_atomic.c and atomic.S

Atomic increment using gcc intrinsics

gcc has a number of intrinsic functions for atomic operations

E.g., atomic increment:
__atomic_fetch_add(&obj->count, 1, __ATOMIC_ACQ_REL);

See incr_atomic2.c

Atomic increment using C11 _Atomic

The C11 standard introduces the _Atomic type qualifier

Defining shared counter type:
typedef struct {

_Atomic int count;
} Shared;

Incrementing the shared counter:
obj->count++;

See incr_atomic3.c

Lock-free data structures

Atomic machine instructions can be the basis for lock-free data structures

Basic ideas:
▶ Data structure must always be in a valid state!
▶ Transactional: mutators speculatively create a proposed update and

attempt to commit it using compare-and-swap (or load linked/ store
conditional)
▶ Retry transaction if another thread committed an update concurrently,

invalidating proposed update

Issue: waits and wake-ups are not really possible
▶ E.g., when trying to dequeue from an empty queue, can’t easily wait for

item to be available, calling thread must spin

	Deadlocks
	Condition variables
	Amdahl's Law
	Atomic machine instructions

