
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache memories

Slides by: Randal E. Bryant and David R. O’Hallaron (CMU)

Presented by Xin Jin and David Hovemeyer for CSF

March 6, 2024

601.229 Computer Systems Fundamentals

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache writes and performance

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What about writes?

▶ Multiple copies of data exist:
▶ L1, L2, L3, Main Memory, Disk

▶ What to do on a write-hit?
▶ Write-through (write immediately to memory)

▶ Write-back (defer write to memory until replacement of line)

▶ Need a dirty bit (line different from memory or not)

▶ What to do on a write-miss?
▶ Write-allocate (load into cache, update line in cache)

▶ Good if more writes to the location follow

▶ No-write-allocate (writes straight to memory, does not load into cache)

▶ Typical
▶ Write-through + No-write-allocate

▶ Write-back + Write-allocate

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 i-cache and d-cache:

32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Performance Metrics

▶ Miss Rate
▶ Fraction of memory references not found in cache (misses / accesses)

= 1 – hit rate

▶ Typical numbers (in percentages):

▶ 3-10% for L1
▶ can be quite small (e.g., < 1%) for L2, depending on size, etc.

▶ Hit Time
▶ Time to deliver a line in the cache to the processor

▶ includes time to determine whether the line is in the cache

▶ Typical numbers:

▶ 4 clock cycle for L1
▶ 10 clock cycles for L2

▶ Miss Penalty
▶ Additional time required because of a miss

▶ typically 50-200 cycles for main memory (Trend: increasing!)

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Let’s think about those numbers

▶ Huge difference between a hit and a miss
▶ Could be 100x, if just L1 and main memory

▶ Would you believe 99% hits is twice as good as 97%?
▶ Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

▶ Average access time:

 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

▶ This is why “miss rate” is used instead of “hit rate”

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing cache-friendly code

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Cache Friendly Code

▶ Make the common case go fast
▶ Focus on the inner loops of the core functions

▶ Minimize the misses in the inner loops
▶ Repeated references to variables are good (temporal locality)

▶ Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication Example

▶ Description:
▶ Multiply N x N matrices

▶ Matrix elements are
doubles (8 bytes)

▶ O(N3) total operations

▶ N reads per source element

▶ N values summed per
destination

▶ but may be able to hold
in register

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

matmult/mm.c

Variable sum
held in
register

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Miss Rate Analysis for Matrix Multiply

▶ Assume:
▶ Block size = 32B (big enough for four doubles)

▶ Matrix dimension (N) is very large

▶ Approximate 1/N as 0.0

▶ Cache is not even big enough to hold multiple rows

▶ Analysis Method:
▶ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Layout of C Arrays in Memory (review)

▶ C arrays allocated in row-major order
▶ each row in contiguous memory locations

▶ Stepping through columns in one row:
▶ for (i = 0; i < N; i++)

sum += a[0][i];
▶ accesses successive elements

▶ if block size (B) > sizeof(a
ij
) bytes, exploit spatial locality

▶ miss rate = sizeof(a
ij
) / B

▶ Stepping through rows in one column:
▶ for (i = 0; i < n; i++)

sum += a[i][0];
▶ accesses distant elements

▶ no spatial locality!

▶ miss rate = 1 (i.e. 100%)

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C
0.25 1.0 0.0

matmult/mm.c

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum
 }
}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C
0.25 1.0 0.0

matmult/mm.c

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C
0.0 0.25 0.25

matmult/mm.c

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C
0.0 0.25 0.25

matmult/mm.c

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

matmult/mm.c

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
 for (j=0; j<n; j++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

matmult/mm.c

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Matrix Multiply Performance

ijk / jik

jki / kji

kij / ikj

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use blocking to improve temporal
locality

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Matrix Multiplication

a b

i

j

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)

 c[i*n + j] += a[i*n + k] * b[k*n + j];
}

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis

▶ Assume:
▶ Matrix elements are doubles

▶ Cache block = 8 doubles

▶ Cache size C << n (much smaller than n)

▶ First iteration:
▶ n/8 + n = 9n/8 misses

▶ Afterwards in cache:
(schematic)

*=

n

*=

8 wide

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis

▶ Assume:
▶ Matrix elements are doubles

▶ Cache block = 8 doubles

▶ Cache size C << n (much smaller than n)

▶ Second iteration:
▶ Again:

n/8 + n = 9n/8 misses

▶ Total misses:
▶ 9n/8 * n2 = (9/8) * n3

n

*=

8 wide

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)

 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i++)
 for (j1 = j; j1 < j+B; j++)
 for (k1 = k; k1 < k+B; k++)

 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*

c

=
c

+

Block size B x B

matmult/bmm.c

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis

▶ Assume:
▶ Cache block = 8 doubles

▶ Cache size C << n (much smaller than n)

▶ Three blocks fit into cache: 3B2 < C

▶ First (block) iteration:
▶ B2/8 misses for each block

▶ 2n/B * B2/8 = nB/4
(omitting matrix c)

▶ Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis

▶ Assume:
▶ Cache block = 8 doubles

▶ Cache size C << n (much smaller than n)

▶ Three blocks fit into cache: 3B2 < C

▶ Second (block) iteration:
▶ Same as first iteration

▶ 2n/B * B2/8 = nB/4

▶ Total misses:
▶ nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking Summary

▶ No blocking: (9/8) * n3

▶ Blocking: 1/(4B) * n3

▶ Suggest largest possible block size B, but limit 3B2 < C!

▶ Reason for dramatic difference:
▶ Matrix multiplication has inherent temporal locality:

▶ Input data: 3n2, computation 2n3

▶ Every array elements used O(n) times!

▶ But program has to be written properly

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Summary

▶ Cache memories can have significant performance impact

▶ You can write your programs to exploit this!
▶ Focus on the inner loops, where bulk of computations and memory

accesses occur.

▶ Try to maximize spatial locality by reading data objects with sequentially
with stride 1.

▶ Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

