
Lecture 3: Integer representation

Brennon Brimhall

4 June 2025



Integer representation

2



Representing integers

• We’ve seen how to represent unsigned (nonnegative) integers
• Bit string intrepreted as a binary (base 2) number

• How to represent signed integers?
• Sign magnitude
• Ones’ complement
• Two’s complement

• In examples that follow, we’ll use 4-bit words
• Ideas will generalize to larger word sizes

3



Desired features for signed representation

What we want in a representation for signed integers:
• About half of encoding space used for negative values
• Each represented integer has a unique encoding as bit string
• Straightforward way to do arithmetic

4



Sign magnitude representation

Let most significant bit be a sign bit: 0→positive, 1→negative

Bit string value Bit string value
0000 0 1000 -0
0001 1 1001 -1
0010 2 1010 -2
0011 3 1011 -3
0100 4 1100 -4
0101 5 1101 -5
0110 6 1110 -6
0111 7 1111 -7

Downsides: two representations of 0, arithmetic complicated by sign bit

5



Ones’ complement

Ones’ complement: to represent -x, invert all of the bits of x

Bit string value Bit string value
0000 0 1000 -7
0001 1 1001 -6
0010 2 1010 -5
0011 3 1011 -4
0100 4 1100 -3
0101 5 1101 -2
0110 6 1110 -1
0111 7 1111 -0

Downsides: two representations of 0, slightly complicated arithmetic

6



Sign magnitude and ones’ complement are obsolete

• Sign magnitude and ones’ complement representations are not used for
integer representation by modern computers
• But, sign magnitude is used in floating point representation

• The rest of this lecture will discuss two’s complement

7



Two’s complement

Two’s complement: in w -bit word, the most significant bit represents −2w−1

E.g., when w = 4,

Representation Bit 3 Bit 2 Bit 1 Bit 0
Unsigned 8 4 2 1

Two’s complement -8 4 2 1

Given bit string 1011,
• Unsigned, 1011 is 8 + 2 + 1 = 11
• Two’s complement, 1011 is −8 + 2 + 1 = −5

8



Two’s complement

Two’s complement: in w -bit word, the most significant bit represents −2w−1

Bit string value Bit string value
0000 0 1000 -8
0001 1 1001 -7
0010 2 1010 -6
0011 3 1011 -5
0100 4 1100 -4
0101 5 1101 -3
0110 6 1110 -2
0111 7 1111 -1

Note asymmetry of negative and positive ranges: -8 is represented, 8 isn’t

9



Thinking about two’s complement

Useful way to think about a w -bit two’s complement representation:
• Bit w − 1 is the sign bit, 0→positive, 1→negative
• If sign bit is 0, usual unsigned interpretation
• If sign bit is 1, bits w − 2 . . 0 indicate the “offset” from −2w−1

10



Two’s complement example

Given w = 4, example bit string is 1011
• Sign bit is 1
• Offset from −23 is 011, which is 3 (2+1)
• -8 + 3 = -5

So, 1011 represents -5

11



Clicker quiz

Clicker quiz omitted from public slides

12



Why two’s complement?

The most important advantage of two’s complement:

Unsigned addition yields correct
result for signed values!

Wow!

13



Why two’s complement?

The most important advantage of two’s complement:

Unsigned addition yields correct
result for signed values!

Wow!

14



Why two’s complement?

The most important advantage of two’s complement:

Unsigned addition yields correct
result for signed values!

Wow!

15



Trying it out

Add two 8 bit integer values:

00101101

+ 11111100
100101001

16



Trying it out

Add two 8 bit integer values:

00101101
+ 11111100

100101001

17



Trying it out

Add two 8 bit integer values:

00101101
+ 11111100

100101001

18



Trying it out

As unsigned values:

00101101 45
+ 11111100 252

100101001 297 (truncated to 41)

19



Trying it out

As signed two’s complement values:

00101101 45
+ 11111100 -4

100101001 41

20



Subtraction via addition

• Two’s complement negation: invert all bits, then add 1
• Example, negating 5

• Original value: 00000101
• Invert bits: 11111010
• Add one: 11111011
• Value is -128 + 64 + 32 + 16 + 8 + 2 + 1 = -5

• a − b can be computed as a + −b
• I.e., invert b, then add to a

21



Sign extension

• Sometimes it is necessary to increase the number of bits in the
representation of a signed integer
• E.g., type cast or implicit conversion of a 16 bit short value to a 32 bit

int value
• In two’s complement, this can be accomplished by sign extension:

replicate the original sign bit as many times as necessary
• This preserves the numeric value!
• Processors typically have dedicated instructions to perform sign

extension

22



Sign extension example

Example: extend 4 bit two’s complement values 1011 and 0011 to 8 bits

Number of bits Bit string Meaning

4 1011 -8 + 2 + 1 = -5
8 11111011 -128 + 64 + 32 + 16 + 8 + 2 + 1 = -5
4 0011 2 + 1 = 3
8 00000011 2 + 1 = 3

23



Sign extension example program

#include <stdio.h>
void printbits(int x, int n) {

for (int i = n-1; i >= 0; i--) {
putchar(x & (1 << i) ? '1' : '0');

}
putchar('\n');

}

int main(void) {
short s = -27987;
int i = (int) s; // <-- sign extension occurs here
printf("%*c", 16, ' ');
printbits(s, 16);
printbits(i, 32);
return 0;

}

24



Sign extension example program (output)

$ gcc signext.c
$ ./a.out

1001001010101101
11111111111111111001001010101101

25



Clicker quiz!

Clicker quiz omitted from public slides

26



Extending unsigned values

Extending the representation of an unsigned value is straightforward:
unconditionally pad with 0 bits

Example: 4 bit unsigned value 1011 = 8 + 2 + 1 = 11

As an 8 bit unsigned value, 00001011 = 8 + 2 + 1 = 11

27



General observation

In general, increasing the number of bits in the representation of an integer
(signed or unsigned) will preserve its value

28



Truncation

• Truncation: reducing the number of bits in the representation of an
integer
• In general, this will lose information and potentially change the value

• Truncation is done by chopping off bits from the left side of the bit string
• Whatever remains is the new representation

29



Truncation example

Example: convert signed 8 bit integer -14 to a 4 bit signed integer

Number of bits Bit string Meaning

8 11110010 -128 + 64 + 32 + 16 + 2 = -14
4 0010 2

30



Truncation example program

#include <stdio.h>
void printbits(int x, int n) {

for (int i = n-1; i >= 0; i--) {
putchar(x & (1 << i) ? '1' : '0');

}
putchar('\n');

}

int main(void) {
short s = -129;
char c = s; // <-- truncation occurs here
printf("s=%d, c=%d\n", s, c);
printbits(s, 16);
printf("%*c", 8, ' ');
printbits(c, 8);
return 0;

}

31



Truncation example program (output)

$ gcc truncate.c
$ ./a.out
s=-129, c=127
1111111101111111

01111111

Explanation:
• short is a 16 bit signed type, char is a signed 8 bit type (depends on

compiler/system)
• After truncation from 16 to 8 bits, the sign bit was 0, so the resulting

value became positive
• Look at the bit representations — convince yourself the values output by

printf make sense!

32



Conversions between signed and unsigned

• Another important type of conversion is between signed and unsigned
values

• Fundamentally, data in the computer’s memory has no inherent meaning
• It is up to the program to decide how to interpret data
• Conversions between signed and unsigned (without changing the number

of bits) do not change the underlying representation as bits

33



Signed/unsigned conversion examples

Example: bit pattern 10010110 as signed and unsigned 8 bit integer values

Signed: -128 + 16 + 4 + 2 = -106

Unsigned: 128 + 16 + 4 + 2 = 150

34



Signed/unsigned conversion example program

#include <stdio.h>
unsigned char parsebits(const char *s) {

unsigned char val = 0;
char c;
while ((c = *s++)) {

val <<= 1;
if (c == '1') { val |= 1; }

}
return val;

}

int main(void) {
unsigned char uc = parsebits("10010110");
char c = (char) uc; // <-- conversion from unsigned to signed
printf("%u %d\n", uc, c);
return 0;

}

35



Signed/unsigned conversion example program (output)

$ gcc convert.c
$ ./a.out
150 -106

36



Considerations for writing programs

37



Programming considerations

• Semantics of integer values and data types can be surprisingly subtle
• C and C++ further complicate matters in several ways:

• Data type sizes vary
• Integer representation not actually specified by the language!
• Some operations the program could perform have semantics that are

implementation-defined or (worse) undefined
• Recommendation: be very careful!

38



Implicit conversions

• In C, there are many contexts in which implicit conversions will occur
• Including ones where information can be lost!

• It’s important to know where implicit conversions happen and to
understand their effects

• It’s not a bad idea to use explicit type casts so that conversions are
explicit, even if they aren’t strictly necessary
• Semantics of program are more obvious, avoid unintended behaviors

39



Sign extension

• Sign extension can sometimes have surprising consequences (bits that you
thought would be 0 become 1)

• Values belonging to unsigned types (unsigned char, unsigned short,
etc.) are never sign extended

40



Acknowledgements

Slides adapted from materials provided by David Hovemeyer.

41


	Integer representation
	Considerations for writing programs

