Lecture 8: Control flow

Brennon Brimhall

9 June 2025

Control flow!

e Control flow:
® Decisions (if/then, switch)
® Loops (for, while)

® Today's example programs are linked as control.zip on the course
website

Decisions

Unconditional jump

® Sometimes we want to jump unconditionally

e Continue a loop
e Complete a decision construct

® This is the jmp instruction

® Because unconditional, not directly useful for implementing decisions and
loops

® But, definitely useful and necessary

Condition codes

® Condition codes are status bits updated by most ALU instructions to
indicate the outcome of the instruction
® Most important condition code bits:
e CF: carry flag (unsigned operation overflowed)
e ZF: zero flag (result was 0)
e SF: sign flag (result was negative)
e OF: overflow flag (signed operation overflowed)

e Condition code bits can be used to make decisions

e |f/else logic, loops

Comparing values

® cmp instruction: essentially the same as sub, except that it doesn't
modify the “result” operand
e Useful for comparing integer values
® Annoying quirk: AT&T syntax puts the operands in the opposite of the
order you might expect
® Eg., cmpl %eax, %ebx computes %ebx - %eax and sets condition
codes appropriately

Testing bits

® test instruction: essentially the same as and, but doesn’t modify the
“result” operand

® Example:

testl $0x80, Yeax
Sets ZF (zero flag) IFF bit 7 of %eax is 0

set instructions

® The setX instructions set a single byte to 0 or 1 depending on whether a
condition code bit is set

e Useful to get the result of a comparison as a data value
® Example:

setz %al
Set %al (low byte of %rax) to 1 IFF ZF (zero flag) is set

Conditional jump

Most often, we want to use the result of a comparison in order to influence a
conditional jump instruction (used for implementing if/else logic and
eventually-terminating loops)

Examples (T means XOR, ~ means NOT, & means AND, | means OR):
Instruction Condition for jump Meaning
je, jz ZF jump if equal
jl SF ~ OF jump if less
jle (SF ~ OF) | ZF jump if less than or equal
jg ~(SF ~ OF) & ~ZF jump if greater
jge ~(SF ~ OF) jump if greater than or equal
ja ~CF & ~ZF jump if above (unsigned)
jae ~CF jump if above or equal (unsigned)
jb CF jump if below (unsigned)
jbe CF | ZF jump if below or equal (unsigned)

Implementing decisions (if, if/else)

Basic approach for implementing an if statement (C and assembly):

/* C code */ /* assembly code */

if (compare opl and op2) { cmp op2, opl
conditionally—-executed code jX .Lout

} conditionally-ezecuted code

rest of code..
.Lout:
rest of code...

Idea is that jX jumps to .Lout if the condition evaluates as false

Implementing decisions (if, if/else)

Basic approach for implementing an if /else statement (C and assembly):

/* C code */ /* assembly code */

if (compare opl and op2) { cmp op2, opl
code if true jX .LelsePart

} else { code if true
code tf false jmp .Lout

} .LelsePart:

rest of code... code tf false

.Lout:

rest of code...

jX jumps to .LelsePart if the condition evaluates as false

Example: can you vote?

/* vote.S */

.section .rodata

sAgePrompt: .string "What is your age? "
sInputFmt: .string "%d"

sCanVoteMsg: .string "You can vote, yay!\n"
sCannotVoteMsg:

.string "You're not old enough to vote yet\n"

.section .bss
age: .space 4

.section .text
.globl main
main:
subq $8, Yrsp

movl $0, %eax
movq $sAgePrompt, %rdi
call printf

movl $0, Jeax

movq $sInputFmt, %rdi
movq $age, %rsi

call scanf

cmpl $18, age

jl .LtooYoungToVote
movq $sCanVoteMsg, %rdi
jmp .LprintMsg

.LtooYoungToVote:

movq $sCannotVoteMsg, %rdi

.LprintMsg:

movl $0, Yeax
call printf

addq $8, %rsp
ret

Running the program

$ gcc -c -no-pie -o vote.o vote.S
$ gcc -no-pie -o vote vote.o

$./vote

What is your age? 17

You're not old enough to vote yet
$./vote

What is your age? 18

You can vote, yay!

Clicker quiz!

Clicker quiz omitted from public slides

Implementing decisions (switch

switch statement: multiway branch based on an integer value

Example:

int month;
scanf ("%d", &month);
switch (month) {
case 1: case 3: case 5: case 7:
case 8: case 10: case 12:
printf("31 days\n"); break;
case 4: case 6: case 9: case 11:
printf ("30 days\n"); break;
case 2:
printf("28 or 29 days\n); break;
default:
printf("not a valid month\n");
}

Switch implementation

One approach: translate into equivalent of if /else if/...
This might be the best approach if the range of tested integers is not dense

If the range of tested integers is dense, can use a jump table

® Jump table = array of code addresses

® | ook up entry, jump to that location
O(1) time!

Full demo program months.S in control.zip

Jump tables

Assume that %esi contains an integer value input by the user

cmpl $1, %esi
jl .LDefaultCase
cmpl $12, Yesi
jg .LDefaultCase
dec Y%esi
jmp *.LJumpTable(,%esi,8)
.L31DaysCase:
code to handle months 1, 3, 5, etc.
jmp .LSwitchDone
.L30DaysCase:
code to handle months 4, 6, 9, etc.
jmp .LSwitchDone
.LFebCase:
code to handle month 2
jmp .LSwitchDone
.LDefaultCase:
code to handle invalid month values
.LSwitchDone:

Jump tables

Assume that %esi contains an integer value input by the user

cmpl $1, %esi
jl .LDefaultCase
cmpl $12, Yesi
jg .LDefaultCase
dec Y%esi
jmp *.LJumpTable(,%esi,8) <-- jump table lookup
.L31DaysCase:
code to handle months 1, 3, 5, etc.
jmp .LSwitchDone
.L30DaysCase:
code to handle months 4, 6, 9, etc.
jmp .LSwitchDone
.LFebCase:
code to handle month 2
jmp .LSwitchDone
.LDefaultCase:
code to handle invalid month values
.LSwitchDone:

Jump tables

The actual jump table is simply an array of pointers, where the element values

are code addresses specified using labels

.LJumpTable:

.quad .L31DaysCase
.quad .LFebCase

.quad .L31DaysCase
.quad .L30DaysCase
.quad .L31DaysCase
.quad .L30DaysCase
.quad .L31DaysCase
.quad .L31DaysCase
.quad .L30DaysCase
.quad .L31DaysCase
.quad .L30DaysCase
.quad .L31DaysCase

=

Loops

Implementing loops

One way to implement a loop (essentially a while):

.Ltop:
cmp value, Teg
jX .Ldone
loop body
jmp .Ltop
.Ldone:

code following loop...
Assumes that:

® regis a loop counter

® jXis a conditional jump which, when taken, terminates loop

Implementing loops

Slightly more clever approach (also for implementing while):
jmp .LcheckCond

.Ltop:
loop body

.LcheckCond:
cmp value, Teg
jX .Ltop
code following loop...
Assumes that:
® reg is a loop counter
® jXis a conditional jump which, when taken, continues loop

This approach eliminates an unconditional jump from the loop body

Loop example program

Compute fib(n) where:
fib(0) =0

fib(1) = 1

For n > 1, fib(n) = fib(n — 2) + fib(n — 1)

Loop example program

Note: this program will only work when N > 1

/* £ib.S */ .LloopTop:
movl %rild, %r9d
#define N 9 addl %r10d, %riid
movl %r9d, %rio0d
.section .rodata inc %ecx
sResultMsg: .string "fib(%u) = %u\n"
.LtestCond:
.section .text cmpl $N, %ecx
.globl main j1 .LloopTop
main:
subq $8, %rsp movl $0, Yeax
movq $sResultMsg, %rdi
movl $1, %ecx /* ‘hecx is the loop counter */ movl $N, %esi
movl $0, %ri0d /* %r10d stores fib(n-1) */ movl %rild, %edx
movl $1, %rild /* %rild stores fib(n) */ call printf
jmp .LtestCond addq $8, Jrsp

ret

Loop example program

$ gcc -c -no-pie -o fib.o fib.S
$ gcc -no-pie -o fib fib.o

$./fib

£ib(9) = 34

Clicker quiz!

Clicker quiz omitted from public slides

Practical assembly programming tips

Know where to put things

® The .section directive specifies which “section” of the executable
program assembled code or data will be placed in

® Put things in the right place!

® Code goes in .text

® Read-only data such as string constants go in .rodata

® Uninitialized (zero-filled) variables and buffers go in .bss
® Use the .space directive to indicate how large these are

e Initialized (non-zero-filled) variables and buffers go in .data

® There are various directives such as .byte, .2byte, .4byte, etc. to
specify initialized data values

Labels

® [abels are names representing addresses of code or data in memory
® For functions and global variables, use appropriate names

® Functions and data exported to other modules must be marked with
.globl

® For control-flow targets within a function, use local labels

® These are labels which start with .L (dot, followed by upper case L)

® The assembler will not add these to the module’'s symbol table

® Using “normal” labels for control flow makes debugging difficult
because gdb thinks they are functions!

Using gdb

® You can debug assembly programs using gdb!

® “Debugging by adding print statements” is much less practical for
assembly programs than programs in a high level language
e Which isn't to say it's not possible or (occasionally) useful

® Being able to use gdb confidently will greatly enhance your ability to
develop working assembly language programs

gdb tips

Set breakpoints (break main, break myProg.S:123)
where: see current call stack

If you compiled your code with debugging symbols (i.e., using -g flag to
gce), next and step commands work as expected!
If code is compiled without debug symbols, it's more difficult:

® disassemble (or just disas): display assembly code of current
function

® stepi: step to next instruction
® nexti: step to next instruction (stepping over call instructions)

gdb tips (continued)

® Use $ prefix to refer to registers (e.g., $rax, $edi, etc.)

® Use print and casts to C data types when inspecting data:
® Print 64 bit value %rsp points to: print *(unsigned long *)$rsp
® Print character string %rdi points to: print (char *)$rdi
® Print fourth element of array of int elements that %r12 points to:
print ((int *)$r12) [3]
® Print contents of %rcx is hexadecimal: print/x $rcx

Acknowledgements

Slides adapted from materials provided by David Hovemeyer.

	Decisions
	Loops
	Practical assembly programming tips

