
Lecture 11: Code and data interactions, buffer overflows

Brennon Brimhall

13 June 2025

Buffer overflows

2

A dangerous function

#include <stdio.h>

char *gets(char *s);

gets reads a single line of input from stdin and stores it in the character
array pointed to by s

Why is this dangerous?

There is no way to ensure that the character array is large enough to store the
input

3

A dangerous function

#include <stdio.h>

char *gets(char *s);

gets reads a single line of input from stdin and stores it in the character
array pointed to by s

Why is this dangerous?

There is no way to ensure that the character array is large enough to store the
input

4

A dangerous function

#include <stdio.h>

char *gets(char *s);

gets reads a single line of input from stdin and stores it in the character
array pointed to by s

Why is this dangerous?

There is no way to ensure that the character array is large enough to store the
input

5

Clicker quiz!

Clicker quiz omitted from public slides

6

Memory safety

• C is a memory-unsafe language
• No bounds checking of array accesses
• No restrictions on pointers:

uint64_t x = 0xDEADBEEF;
char *s = (char *) x;
strcpy(s, "Hello, world!");

• Invalid memory references are an all-too-common source of bugs in C
programs

• What are the consequences of an invalid memory reference?

7

segfaults

• If you’re lucky, an invalid memory reference will crash the program with a
segmentation violation, a.k.a. segfault

• Recall (from Lecture 6) using the pmap program to view a running
program’s memory map:

29208: ./art
0000562d71c36000 4K r-x-- art
0000562d71e36000 4K r---- art
0000562d71e37000 4K rw--- art
0000562d735fc000 132K rw--- [anon]
...etc...

• Memory references outside a valid region of virtual memory, or which
violate access permissions (e.g., store to read-only region), result in a
processor execption that is handled by the OS kernel

• Usual result is that OS sends a signal that terminates the running program

8

Memory corruption

• A much worse consequence of an invalid memory store: data is corrupted
• A variable or array element is overwritten
• A saved register value or temporary value is overwritten
• A return address is overwritten (this is particularly bad, as we’ll see

shortly)
• In general, once a program makes an invalid memory reference, it cannot

be trusted to behave correctly
• This is why valgrind is such an important tool

9

A dangerous program

Based on example in textbook (code in buf.zip on course website):
#include <stdio.h>

void echo(void) {
char buf[4];
gets(buf);
puts(buf);

}

int main(void) {
printf("Enter a line of text:\n");
echo();
return 0;

}

10

A dangerous program

Based on example in textbook (code in buf.zip on course website):
#include <stdio.h>

void echo(void) {
char buf[4]; <-- small buffer, safe only if string length 3 or less
gets(buf);
puts(buf);

}

int main(void) {
printf("Enter a line of text:\n");
echo();
return 0;

}

11

Compiling and running

$ gcc -Og -no-pie -Wall -Wextra -fno-stack-protector -o danger danger.c
...warning about implicit declaration of gets omitted...
...warning from linker about gets being dangerous omitted...
$./danger
Enter a line of text:
Hi there!
Hi there!
$ echo $?
0

Wait...why did the program behave correctly?

12

Compiling and running

$ gcc -Og -no-pie -Wall -Wextra -fno-stack-protector -o danger danger.c
...warning about implicit declaration of gets omitted...
...warning from linker about gets being dangerous omitted...
$./danger
Enter a line of text:
Hi there!
Hi there!
$ echo $?
0

Wait...why did the program behave correctly?

13

Inspect the generated code

gcc’s -S option translates C code (.c file) into assembly language (.s file)

$ gcc -Og -no-pie -fno-stack-protector -S danger.c
...warning about implicit declaration of gets omitted...
$ head -8 danger.s

.file "danger.c"

.text

.globl echo

.type echo, @function
echo:
.LFB23:

.cfi_startproc
pushq %rbx

14

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

15

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx <-- save %rbx (callee-saved register)
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

16

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp <-- reserve 16 bytes of space in stack frame
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

17

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx <-- put base address of buf in %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

18

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi <-- pass base address of buf to gets
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

19

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax <-- no vector args to gets
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

20

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT <-- call gets
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

21

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi <-- pass base address of buf to puts
call puts@PLT
addq $16, %rsp
popq %rbx
ret

22

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT <-- call puts
addq $16, %rsp
popq %rbx
ret

23

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp <-- de-allocate space in stack frame
popq %rbx
ret

24

The echo function (assembly code)

Cleaned-up version of the echo function:

echo:
pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx <-- restore %rbx
ret

25

Tracing the danger program

On entry to echo function:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

26

Tracing the danger program

After pushing %rbx:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

27

Tracing the danger program

After reserving 16 bytes in stack frame:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

28

Tracing the danger program

After loading base address of buf into %rbx:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

29

Tracing the danger program

After loading base address of buf into %rbx:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

Exactly 12 bytes can be
stored before overwriting
the return address

30

Tracing the danger program

Pass base address of buf to gets:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

31

Tracing the danger program

Just before call to gets:
echo:

pushq %rbx
subq $16, %rsp
leaq 12(%rsp), %rbx
movq %rbx, %rdi
movl $0, %eax
call gets@PLT
movq %rbx, %rdi
call puts@PLT
addq $16, %rsp
popq %rbx
ret

32

Explanation of behavior

• The danger program appeared to work when the input was Hi there!
because the string only requires 10 bytes to store, and 12 bytes were
available

• The saved %rbx value is partially overwritten, but main (the caller)
wasn’t using that register
• Hard to know whether main’s caller was using it

We got lucky

33

Explanation of behavior

• The danger program appeared to work when the input was Hi there!
because the string only requires 10 bytes to store, and 12 bytes were
available

• The saved %rbx value is partially overwritten, but main (the caller)
wasn’t using that register
• Hard to know whether main’s caller was using it

We got lucky

34

Overwriting the return address

• When the return address is overwritten, control won’t return to the
correct instruction when the function returns

• What could happen?

35

The code could crash

$./danger
Enter a line of text:
Hello, world!
Hello, world!
Segmentation fault (core dumped)

• The string Hello, world! requires 14 bytes to represent, so the first
two bytes of the return address are overwritten

• Control returns to a zeroed region of memory
• The bytes 00 00 encode the instruction add %al,(%rax)
• %rax contains the return value of puts, which is 14
• No memory is mapped at address 14, so a segmentation fault occurs

36

The code could crash

$./danger
Enter a line of text:
Hello, world!
Hello, world!
Segmentation fault (core dumped)

• The string Hello, world! requires 14 bytes to represent, so the first
two bytes of the return address are overwritten

• Control returns to a zeroed region of memory
• The bytes 00 00 encode the instruction add %al,(%rax)
• %rax contains the return value of puts, which is 14
• No memory is mapped at address 14, so a segmentation fault occurs

37

Vulnerability to untrusted data

• Let’s assume that the input sent to the program is untrusted
• I.e., we should assume that it was generated by a malicious user who

wants to take control of our computer and do nefarious things
• For many kinds of programs — especially network applications — most

or all input data is untrusted
• Because of the buffer overflow, the input sent to the program can change

the echo function’s return address to an arbitrary value
• This means the malicious user has (some) control over which code

executes when the function returns
• This is extremely bad!

• If a malicious actor (“attacker”) knows that a buffer overflow bug exists,
what does it allow them to do?

38

Executing arbitrary code from the stack

• In the previous (32-bit) x86 architecture, any region of memory marked as
readable is also executable

• The attacker can send code that will be written onto the stack
• The malicious data must overwrite the return address with the location

of the exploit code (on the compromised stack)
• This requires knowing (or guessing) the stack pointer’s value (so that

control “returns” to the code on the stack)

39

Nop sleds

• To make arbitrary code execution more feasible, attacker can construct a
“nop sled”: a long series of nop (do nothing) instructions leading to
exploit code
• As long as forged return address hits the nop sled, the exploit code will

execute
• This allows the exploit to work (with some probability) even if the exact

stack pointer value isn’t known (the guess just has to be “close
enough”)

40

Exploiting existing code

• Another way of exploiting a buffer overflow is to overwrite the return
address with the address of an instruction in the running program

• If the target instruction is chosen carefully, it may be able to cause the
execution of an arbitrary function with arbitrary arguments

• For example, if the return address is overwritten with a code address
leading to the execution of the system function, an arbitrary program
could be executed
• The exploit must somehow manage to forge argument(s): pop

instructions are useful for this

41

The costs of buffer overflow vulnerabilities

• Security compromises of computer systems cost the U.S. economy many
billions of dollars anually

• Buffer overflows are an important category of security vulnerability
• But there are many other types of vulnerabilities!

42

Mitigations for buffer overflows

43

Mitigations for buffer overflows

• What can we do about buffer overflows?
• Write code that doesn’t have bugs
• Use memory-safe programming languages
• Make stack non-executable
• Address space randomization
• Detect stack smashing

44

Write code that doesn’t have bugs

• There are lots of things we can do to improve code quality:
• Thorough testing
• Code reviews
• Static analysis

• These are all good ideas, and they will help
• None of these techniques will catch all bugs

45

Use memory-safe programming languages

• There are programming languages which guarantee memory safety: Java,
Rust (except for “unsafe” code), etc.
• Memory references are checked at compile time and/or runtime to

ensure that only valid memory locations are accessed by the program
• These languages can (in principle) eliminate the possibility of buffer

overflows
• Other kinds of security vulnerabilities are still possible

• Choose the right language for the job

46

Make stack non-executable

• x86-64 systems allow regions of memory to be marked as non-executable
• Attempt to execute code from non-executable regions results in a

processor exception which can be handled by the OS kernel
• This can eliminate the possibility of a buffer overflow resulting in arbitrary

code execution from the stack
• Recall example memory map from Lecture 6 (stack is not executable):

00007fff84484000 132K rw--- stack

• This does not eliminate the possibility of security vulnerabilities, but it
makes them harder to implement

47

Address space randomization

• For exploits which depend on knowing the current (approximate) stack
pointer value, the OS kernel can randomly choose where to place the
stack in memory

• Code and data in position-independent executables can be loaded into
memory at arbitrary addresses
• Exploits depending on a return address jumping to a specific instruction

become less likely to succeed
• Address space randomization techniques make exploits more difficult, but

don’t make them impossible

48

Detect stack smashing

• Compiler can generate code to detect improper
modification of stack memory:
• On procedure entry, store a “stack canary”

value near the return address
• Prior to return, check the canary value
• If canary was modified, terminate program

• Canary value generated randomly, cannot easily
be guessed

• Return address (in theory) can’t be overwritten
without also overwriting canary value

• Small runtime overhead incurred on
instrumented function calls

• Enabled by default in recent Linux/gcc

Not actually a canary

49

Acknowledgements

Slides adapted from materials provided by David Hovemeyer.

50

	Buffer overflows
	Mitigations for buffer overflows

