
1

Lecture 12: Program optimization

Randal E. Bryant and David R. O’Hallaron (CMU)
(Minor changes for CSF by Xin Jin and David Hovemeyer)

February 19, 2024

601.229 Computer Systems Fundamentals

2

Today

⬛ Overview

⬛ Generally Useful Optimizations
▪ Code motion/precomputation

▪ Strength reduction

▪ Sharing of common subexpressions

▪ Removing unnecessary procedure calls

⬛ Optimization Blockers
▪ Procedure calls

▪ Memory aliasing

3

Performance Realities

There’s more to performance than asymptotic complexity

⬛ Constant factors matter too!
▪ Easily see 10:1 performance range depending on how code is written

▪ Must optimize at multiple levels:

▪ algorithm, data representations, procedures, and loops

⬛ Must understand system to optimize performance
▪ How programs are compiled and executed

▪ How modern processors + memory systems operate

▪ How to measure program performance and identify bottlenecks

▪ How to improve performance without destroying code modularity and
generality

4

Optimizing Compilers

⬛ Provide efficient mapping of program to machine
▪ register allocation

▪ code selection and ordering (scheduling)

▪ dead code elimination

▪ eliminating minor inefficiencies

⬛ Don’t (usually) improve asymptotic efficiency
▪ up to programmer to select best overall algorithm

▪ big-O savings are (often) more important than constant factors

▪ but constant factors also matter

⬛ Have difficulty overcoming “optimization blockers”
▪ potential memory aliasing

▪ potential procedure side-effects

5

Limitations of Optimizing Compilers

⬛ Operate under fundamental constraint

▪ Must not cause any change in program behavior

▪ Except, possibly when program making use of nonstandard language
features

▪ Often prevents it from making optimizations that would only affect behavior
under pathological conditions.

⬛ Behavior that may be obvious to the programmer can be obfuscated by
languages and coding styles

▪ e.g., Data ranges may be more limited than variable types suggest

⬛ Most analysis is performed only within procedures

▪ Whole-program analysis is too expensive in most cases

▪ Newer versions of GCC do interprocedural analysis within individual files

▪ But, not between code in different files

⬛ Most analysis is based only on static information

▪ Compiler has difficulty anticipating run-time inputs

⬛ When in doubt, the compiler must be conservative

6

Generally Useful Optimizations

⬛ Optimizations that you or the compiler should do regardless
of processor / compiler

⬛ Code Motion
▪ Reduce frequency with which computation performed

▪ If it will always produce same result

▪ Especially moving code out of loop

 long j;
 int ni = n*i;
 for (j = 0; j < n; j++)

 a[ni+j] = b[j];

void set_row(double *a, double *b,
 long i, long n)
{
 long j;
 for (j = 0; j < n; j++)

 a[n*i+j] = b[j];
}

7

Reduction in Strength

▪ Replace costly operation with simpler one

▪ Shift, add instead of multiply or divide

16*x → x << 4
▪ Utility machine dependent

▪ Depends on cost of multiply or divide instruction

– On Intel Nehalem, integer multiply requires 3 CPU cycles

▪ Recognize sequence of products

for (i = 0; i < n; i++) {
 int ni = n*i;
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
}

int ni = 0;
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
 ni += n;
}

8

Share Common Subexpressions

▪ Reuse portions of expressions

▪ GCC will do this with –O1

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

9

⬛ Procedure to Convert String to Lower Case

void lower(char *s)
{
 size_t i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Optimization Blocker #1: Procedure Calls

10

Lower Case Conversion Performance

▪ Time quadruples when double string length

▪ Quadratic performance

lower1

11

Convert Loop To Goto Form

▪ strlen executed every iteration

void lower(char *s)
{
 size_t i = 0;
 if (i >= strlen(s))
 goto done;
 loop:
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
 i++;
 if (i < strlen(s))
 goto loop;
 done:
}

12

Calling Strlen

⬛ Strlen performance
▪ Only way to determine length of string is to scan its entire length, looking for

null character.

⬛ Overall performance, string of length N
▪ N calls to strlen

▪ Require times N, N-1, N-2, …, 1

▪ Overall O(N2) performance

/* My version of strlen */
size_t strlen(const char *s)
{
 size_t length = 0;
 while (*s != '\0') {
 s++;
 length++;
 }
 return length;
}

13

Improving Performance

▪ Move call to strlen outside of loop

▪ Since result does not change from one iteration to another

▪ Form of code motion

void lower(char *s)
{
 size_t i;
 size_t len = strlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

14

Lower Case Conversion Performance

▪ Time doubles when double string length

▪ Linear performance of lower2

17

Optimization Blocker: Procedure Calls

⬛ Why couldn’t compiler move strlen out of inner loop?

▪ Procedure may have side effects
▪ Alters global state each time called

▪ Function may not return same value for given arguments
▪ Depends on other parts of global state

▪ Procedure lower could interact with strlen

⬛ Warning:

▪ Compiler treats procedure call as a black box

▪ Weak optimizations near them

⬛ Remedies:

▪ Use of inline functions

▪ GCC does this with –O1

– Within single file

▪ Do your own code motion

size_t lencnt = 0;
size_t strlen(const char *s)
{
 size_t length = 0;
 while (*s != '\0') {
 s++; length++;
 }
 lencnt += length;
 return length;
}

18

Memory Matters

▪ Code updates b[i] on every iteration

▪ Why couldn’t compiler optimize this away?

sum_rows1 inner loop
.L4:
 movsd (%rsi,%rax,8), %xmm0 # FP load
 addsd (%rdi), %xmm0 # FP add
 movsd %xmm0, (%rsi,%rax,8) # FP store
 addq $8, %rdi
 cmpq %rcx, %rdi
 jne .L4

/* Sum rows is of n X n matrix a
 and store in vector b */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {

 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];

 }
}

19

Memory Aliasing

▪ Code updates b[i] on every iteration

▪ Must consider possibility that these updates will affect program
behavior

/* Sum rows is of n X n matrix a
 and store in vector b */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {

 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];

 }
}

double A[9] =
 { 0, 1, 2,
 4, 8, 16,
 32, 64, 128 };

double *B = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:

20

Removing Aliasing

▪ No need to store intermediate results

sum_rows2 inner loop
.L10:
 addsd (%rdi), %xmm0 # FP load + add
 addq $8, %rdi
 cmpq %rax, %rdi
 jne .L10

/* Sum rows is of n X n matrix a
 and store in vector b */
void sum_rows2(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 double val = 0;

 for (j = 0; j < n; j++)
 val += a[i*n + j];

 b[i] = val;
 }
}

21

Optimization Blocker: Memory Aliasing

⬛ Aliasing
▪ Two different memory references specify single location

▪ Easy to have happen in C

▪ Since allowed to do address arithmetic

▪ Direct access to storage structures

▪ Get in habit of introducing local variables

▪ Accumulating within loops

▪ Your way of telling compiler not to check for aliasing

22

Exploiting Instruction-Level Parallelism

⬛ Need general understanding of modern processor design
▪ Hardware can execute multiple instructions in parallel

⬛ Performance limited by data dependencies

⬛ Simple transformations can yield dramatic performance
improvement
▪ Compilers often cannot make these transformations

▪ Lack of associativity and distributivity in floating-point arithmetic

23

Benchmark Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{

size_t len;
data_t *data;

} vec;

/* retrieve vector element
 and store at val */
int get_vec_element
 (*vec v, size_t idx, data_t *val)
{

if (idx >= v->len)
return 0;

*val = v->data[idx];
return 1;

}

len
data

0 1 len-1

⬛Data Types
▪ Use different declarations

for data_t
▪ int
▪ long
▪ float
▪ double

24

Benchmark Computation

⬛Data Types
▪ Use different declarations

for data_t
▪ int
▪ long
▪ float
▪ double

⬛Operations
▪ Use different definitions of
OP and IDENT

▪ + / 0
▪ * / 1

void combine1(vec_ptr v, data_t *dest)
{
 long int i;
 *dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Compute sum or
product of vector
elements

25

Cycles Per Element (CPE)

⬛ Convenient way to express performance of program that operates on
vectors or lists

⬛ Length = n

⬛ In our case: CPE = cycles per OP

⬛ T = CPE*n + Overhead
▪ CPE is slope of line

psum1
Slope =

9.0

 psum2
Slope =

6.0

26

Benchmark Performance

void combine1(vec_ptr v, data_t *dest)
{
 long int i;
 *dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

Compute sum or
product of vector
elements

Method Integer Double FP

Operation Add Mult Add Mult

Combine1
unoptimized

22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

27

Basic Optimizations

⬛ Move vec_length out of loop

⬛ Avoid bounds check on each cycle

⬛ Accumulate in temporary

void combine4(vec_ptr v, data_t *dest)
{
 long i;
 long length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

28

Effect of Basic Optimizations

⬛ Eliminates sources of overhead in loop

void combine4(vec_ptr v, data_t *dest)
{
 long i;
 long length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 –O1 10.12 10.12 10.17 11.14

Combine4 1.27 3.01 3.01 5.01

29

Modern CPU Design

Execution

Functional
Units

Instruction Control

Branch Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates

30

Superscalar Processor

⬛ Definition: A superscalar processor can issue and execute
multiple instructions in one cycle. The instructions are
retrieved from a sequential instruction stream and are
usually scheduled dynamically.

⬛ Benefit: without programming effort, superscalar
processor can take advantage of the instruction level
parallelism that most programs have

⬛ Most modern CPUs are superscalar.

⬛ Intel: since Pentium (1993)

31

Pipelined Functional Units

Stage 1

Stage 2

Stage 3

long mult_eg(long a, long b, long c) {
 long p1 = a*b;
 long p2 = a*c;
 long p3 = p1 * p2;
 return p3;
}

▪ Divide computation into stages

▪ Pass partial computations from stage to stage

▪ Stage i can start on new computation once values passed to i+1

▪ E.g., complete 3 multiplications in 7 cycles, even though each
requires 3 cycles

Time

1 2 3 4 5 6 7

Stage 1 a*b a*c p1*p2

Stage 2 a*b a*c p1*p2

Stage 3 a*b a*c p1*p2

32

Haswell CPU

⬛ 8 Total Functional Unit
⬛ Multiple instructions can execute in parallel

2 load, with address computation
1 store, with address computation
4 integer
2 FP multiply
1 FP add
1 FP divide

⬛ Some instructions take > 1 cycle, but can be pipelined
InstructionLatency Cycles/Issue
Load / Store 4 1
Integer Multiply3 1
Integer/Long Divide 3-30 3-30
Single/Double FP Multiply 5 1
Single/Double FP Add 3 1
Single/Double FP Divide 3-15 3-15

33

x86-64 Compilation of Combine4

⬛ Inner Loop (Case: Integer Multiply)

.L519: # Loop:
imull (%rax,%rdx,4), %ecx # t = t * d[i]
addq$1, %rdx # i++
cmpq%rdx, %rbp # Compare length:i
jg .L519 # If >, goto Loop

Method Integer Double FP

Operation Add Mult Add Mult

Combine4 1.27 3.01 3.01 5.01

Latency Bound 1.00 3.00 3.00 5.00

34

Combine4 = Serial Computation (OP = *)

⬛ Computation (length=8)
 ((((((((1 * d[0]) * d[1]) * d[2]) * d[3])
* d[4]) * d[5]) * d[6]) * d[7])

⬛ Sequential dependence
▪ Performance: determined by latency of OP

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

35

Loop Unrolling (2x1)

⬛ Perform 2x more useful work per iteration

void unroll2a_combine(vec_ptr v, data_t *dest)
{
 long length = vec_length(v);
 long limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 long i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x = (x OP d[i]) OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {
 x = x OP d[i];
 }
 *dest = x;
}

36

Effect of Loop Unrolling

⬛ Helps integer add
▪ Achieves latency bound

⬛ Others don’t improve. Why?
▪ Still sequential dependency

x = (x OP d[i]) OP d[i+1];

Method Integer Double FP

Operation Add Mult Add Mult

Combine4 1.27 3.01 3.01 5.01

Unroll 2x1 1.01 3.01 3.01 5.01

Latency Bound 1.00 3.00 3.00 5.00

37

Getting High Performance

⬛ Good compiler and flags

⬛ Don’t do anything stupid
▪ Watch out for hidden algorithmic inefficiencies

▪ Write compiler-friendly code

▪ Watch out for optimization blockers:
procedure calls & memory references

▪ Look carefully at innermost loops (where most work is done)

⬛ Tune code for machine
▪ Exploit instruction-level parallelism

▪ Avoid unpredictable branches

▪ Make code cache friendly (Covered later in course)

