
Lecture 13: Pipelining

Brennon Brimhall

20 June 2025

MIPS overview

2

History

• Developed by MIPS Technologies in 1984, first product in 1986
• Used in

• Silicon Graphics (SGI) Unix workstations
• Digital Equipment Corporation (DEC) Unix workstation
• Nintendo 64
• Sony PlayStation

• Inspiration for ARM (esp. v8)

3

Overview

• 32 bit architecture (registers, memory addresses)
• 32 registers
• Multiply and divide instructions
• Floating point numbers

4

Example: Addition

• Mathematical view of addition
a = b + c

• MIPS instruction
add a,b,c

a, b, c are registers

5

Example: Addition

• Mathematical view of addition
a = b + c

• MIPS instruction
add a,b,c

a, b, c are registers

6

32 Registers

• Some are special
0 $zero always has the value 0

31 $ra contains return address

• Some have usage conventions
1 $at reserved for pseudo-instructions

2-3 $v0-$v1 return values of a function call
4-7 $a0-$a3 arguments for a function call

8-15,24,25 $t0-$t9 temporaries, can be overwritten by function
16-23 $s0-$s7 saved, have to be preserved by function
26-27 $k0-$k1 reserved for kernel

28 $gp global area pointer
29 $sp stack pointer
30 $fp frame pointer

7

32 Registers

• Some are special
0 $zero always has the value 0

31 $ra contains return address
• Some have usage conventions

1 $at reserved for pseudo-instructions

2-3 $v0-$v1 return values of a function call
4-7 $a0-$a3 arguments for a function call

8-15,24,25 $t0-$t9 temporaries, can be overwritten by function
16-23 $s0-$s7 saved, have to be preserved by function
26-27 $k0-$k1 reserved for kernel

28 $gp global area pointer
29 $sp stack pointer
30 $fp frame pointer

8

32 Registers

• Some are special
0 $zero always has the value 0

31 $ra contains return address
• Some have usage conventions

1 $at reserved for pseudo-instructions
2-3 $v0-$v1 return values of a function call
4-7 $a0-$a3 arguments for a function call

8-15,24,25 $t0-$t9 temporaries, can be overwritten by function
16-23 $s0-$s7 saved, have to be preserved by function
26-27 $k0-$k1 reserved for kernel

28 $gp global area pointer
29 $sp stack pointer
30 $fp frame pointer

9

32 Registers

• Some are special
0 $zero always has the value 0

31 $ra contains return address
• Some have usage conventions

1 $at reserved for pseudo-instructions
2-3 $v0-$v1 return values of a function call
4-7 $a0-$a3 arguments for a function call

8-15,24,25 $t0-$t9 temporaries, can be overwritten by function
16-23 $s0-$s7 saved, have to be preserved by function

26-27 $k0-$k1 reserved for kernel
28 $gp global area pointer
29 $sp stack pointer
30 $fp frame pointer

10

32 Registers

• Some are special
0 $zero always has the value 0

31 $ra contains return address
• Some have usage conventions

1 $at reserved for pseudo-instructions
2-3 $v0-$v1 return values of a function call
4-7 $a0-$a3 arguments for a function call

8-15,24,25 $t0-$t9 temporaries, can be overwritten by function
16-23 $s0-$s7 saved, have to be preserved by function
26-27 $k0-$k1 reserved for kernel

28 $gp global area pointer
29 $sp stack pointer
30 $fp frame pointer

11

Pipelining

12

Laundry Analogy

6pm 7pm 8pm 9pm 10pm 11pm

Task A

Task B

Task C

Task D

13

Laundry Pipelined

x

6pm 7pm 8pm 9pm 10pm 11pm

Task A

Task B

Task C

Task D

14

Speed-up

• Theoretical speed-up: 3 times
• Actual speed-up in example: 2 times

• sequential: 1:30+1:30+1:30+1:30 = 6 hours
• pipelined: 1:30+0:30+0:30+0:30 = 3 hours

• Many tasks → speed-up approaches theoretical limit

15

MIPS instruction pipeline

16

MIPS Pipeline

• Fetch instruction from memory
• Read registers and decode instruction (note: registers are always encoded

in same place in instruction)
• Execute operation OR calculate an address
• Access an operand in memory
• Write result into a register

17

Time for Instructions

Breakdown for each type of instruction

Instruction Instr. Register ALU Data Register Total
class fetch read oper. access write time

Load word (lw) 200ps 100ps 200ps 200ps 100ps 800ps
Store word (sw) 200ps 100ps 200ps 200ps 700ps
R-format (add) 200ps 100ps 200ps 100ps 600ps

Brand (beq) 200ps 100ps 200ps 500ps

18

Pipeline Execution

Instruction
Fetch

Reg.
read ALU Data

access
Reg.
write

Instruction
Fetch

Reg.
read ALU Data

access
Reg.
write

Instruction
Fetch

lw $t1, 100($t0)

lw $t2, 104($t0)

lw $t3, 108($t0)

200 400 600 800 1000 1200 1400 1600 1800

Instruction
Fetch

Reg.
read ALU Data

access
Reg.
write

Instruction
Fetch

Reg.
read ALU Data

access
Reg.
write

lw $t1, 100($t0)

lw $t2, 104($t0)

lw $t3, 108($t0)

200 400 600 800 1000 1200 1400 1600 1800

Instruction
Fetch

Reg.
read ALU Data

access
Reg.
write

19

Pipeline Execution

Instruction
Fetch

Reg.
read ALU Data

access
Reg.
write

Instruction
Fetch

Reg.
read ALU Data

access
Reg.
write

Instruction
Fetch

lw $t1, 100($t0)

lw $t2, 104($t0)

lw $t3, 108($t0)

200 400 600 800 1000 1200 1400 1600 1800

Instruction
Fetch

Reg.
read ALU Data

access
Reg.
write

Instruction
Fetch

Reg.
read ALU Data

access
Reg.
write

lw $t1, 100($t0)

lw $t2, 104($t0)

lw $t3, 108($t0)

200 400 600 800 1000 1200 1400 1600 1800

Instruction
Fetch

Reg.
read ALU Data

access
Reg.
write

20

Speed-up

• Theoretical speed-up: 4 times
• Actual speed-up in example: 1.71 times

• sequential: 800ps + 800ps + 800ps = 2400ps
• pipelined: 1000ps + 200ps + 200ps = 1400ps

• Many tasks → speed-up approaches theoretical limit

21

Design for Pipelining

• All instructions are 4 bytes
→ easy to fetch next instruction

• Few instruction formats
→ parallel op decode and register read

• Memory access limited to load and store instructions
→ stage 3 used for memory access, otherwise operation execution

• Words aligned in memory
→ able to read in one instruction
(aligned = memory address multiple of 4)

22

Design for Pipelining

• All instructions are 4 bytes
→ easy to fetch next instruction

• Few instruction formats
→ parallel op decode and register read

• Memory access limited to load and store instructions
→ stage 3 used for memory access, otherwise operation execution

• Words aligned in memory
→ able to read in one instruction
(aligned = memory address multiple of 4)

23

Design for Pipelining

• All instructions are 4 bytes
→ easy to fetch next instruction

• Few instruction formats
→ parallel op decode and register read

• Memory access limited to load and store instructions
→ stage 3 used for memory access, otherwise operation execution

• Words aligned in memory
→ able to read in one instruction
(aligned = memory address multiple of 4)

24

Design for Pipelining

• All instructions are 4 bytes
→ easy to fetch next instruction

• Few instruction formats
→ parallel op decode and register read

• Memory access limited to load and store instructions
→ stage 3 used for memory access, otherwise operation execution

• Words aligned in memory
→ able to read in one instruction
(aligned = memory address multiple of 4)

25

Hazards

26

Hazards

• Hazard = next instruction cannot be executed in next clock cycle
• Types

• structural hazard
• data hazard
• control hazard

27

Structural Hazard

• Definition: instructions overlap in resource use in same stage
• For instance: memory access conflict

1 2 3 4 5 6 7
i1 FETCH DECODE MEMORY MEMORY ALU REGISTER
i2 FETCH DECODE MEMORY MEMORY ALU REGISTER

conflict

• MIPS designed to avoid structural hazards

28

Data Hazard

• Definition: instruction waits on result from prior instruction
• Example

add $s0, $t0, $t1
sub $t0, $s0, $t3

• add instruction writes result to register $s0 in stage 5
• sub instruction reads $s0 in stage 2

⇒ Stage 2 of sub has to be delayed
• We overcome this in hardware

29

Graphical Representation

IF

add $s0,$t0,$t1

200 400 600 800 1000

ID MEM WBEX

• IF: instruction fetch
• ID: instruction decode
• EX: execution
• MEM: memory access
• WB: write-back

30

Add and Subtract

IF

add $s0,$t0,$t1

200 400 600 800 1000

ID MEM WBEX

IF

sub $t0,$s0,$t3

ID MEM WBEX

• Add wiring to circuit to directly connect
output of ALU for next instruction

31

Load and Subtract

IF

lw $s0,20($t0)

200 400 600 800 1000

ID MEM WBEX

IF

sub $t0,$s0,$t3

ID MEM WBEX

bubble bubble bubble bubble bubble

1200

• Add wiring from memory lookup to ALU
• Still 1 cycle unused: "pipeline stall" or "bubble"

32

Reorder Code

Code with data hazard

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Reorder code (may be done by compiler)

lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Load instruction now completed in time

33

Reorder Code

Code with data hazard

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Reorder code (may be done by compiler)

lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Load instruction now completed in time

34

Reorder Code

Code with data hazard

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Reorder code (may be done by compiler)

lw $t1, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $t1, $t2
sw $t3, 12($t0)
add $t5, $t1, $t4
sw $t5, 16($t0)

Load instruction now completed in time

35

Clicker quiz!

Clicker quiz omitted from public slides

36

Clicker quiz!

Clicker quiz omitted from public slides

37

Control Hazard

• Also called branch hazard
• Selection of next instruction depends on outcome of previous
• Example

add $s0, $t0, $t1
beq $s0, $s1, ff40
sub $t0, $s0, $t3

• sub instruction only executed if branch condition fails
→ cannot start until branch condition result known

38

Branch Prediction

• Assume that branches are never taken
→ full speed if correct

• More sophisticated
• keep record of branch taken or not
• make prediction based on history

39

Pipelined data path

40

Datapath

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

41

Pipelined Datapath

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

42

Load

43

Load: Stage 1

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

44

Load: Stage 2

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

45

Load: Stage 3

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

46

Load: Stage 4

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

47

Load: Stage 5

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

48

Store

49

Store: Stage 1

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

50

Store: Stage 2

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

51

Store: Stage 3

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

52

Store: Stage 4

Data
Memory

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

53

Store: Stage 5

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

54

Add

55

Add: Stage 1

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

56

Add: Stage 2

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

57

Add: Stage 3

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

58

Add: Stage 4

Data
Memory

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

59

Add: Stage 5

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

60

Write to register

61

Which Register?

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

62

Problem

• Write register
• decoded in stage 2
• used in stage 5

• Identity of register has to be passed along

63

Data Path for Write Register

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

64

Pipelined control

65

Pipelined Control

• At each stage, information from instruction is needed
• which ALU operation to execute
• which memory address to consult
• which register to write to

• This control information has to be passed through stages

66

Pipelined Control

IF ID EX MEM WB

WB WB WB

M M

EX

C
on

tr
ol

67

Control Flags

ALU

Add

Instruction
Memory

Address

Instruction
Registers

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2 Data

Memory

Address

Write
data

Zero

ADD

Result

Se
le

ct
or

Se
le

ct
or

Sign
extended

Shift
Left

PC

Se
le

ct
or

4

Read
data

IF:
Instruction Fetch

ID: Instruction decoder
register file read

MEM:
Memory access

EX: Execute /
address calculate

WB:
Write Back

Register Write

Memory R/W

ALU
Operation

Memory
To

Register

ALU
Source

Branch
(req.
add.
logic)

68

Acknowledgements

Slides adapted from materials provided by David Hovemeyer.

69

	MIPS overview
	Pipelining
	MIPS instruction pipeline
	Hazards
	Pipelined data path
	Load
	Store
	Add
	Write to register
	Pipelined control

