Cache memories

Slides by: Randal E. Bryant and David R. O’Hallaron (CMU)
Presented by Xin Jin and David Hovemeyer for CSF

March 6, 2024

601.229 Computer Systems Fundamentals

==X
&

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache writes and performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What about writes?

» Multiple copies of data exist:
» L1, L2, L3, Main Memory, Disk

» What to do on a write-hit?

» Write-through (write immediately to memory)
» Write-back (defer write to memory until replacement of line)
» Need a dirty bit (line different from memory or not)
» What to do on a write-miss?

» Write-allocate (load into cache, update line in cache)
» Good if more writes to the location follow

» No-write-allocate (writes straight to memory, does not load into cache)
» Typical

» Write-through + No-write-allocate

» Write-back + Write-allocate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Intel Core i7 Cache Hierarchy

Processor package

__

Access: 40-75 cycles

L3 unified cache

(shared by all cores) Block size: 64 bytes for

all caches.

. Core 0 Core 3 ' L1 i-cache and d-cache:
: 32 KB, 8-way,
Regs Regs Access: 4 cycles

L1 L1 L1 L1 L2 unified cache:

i d-cache i-cache d-cache i-cache : 256 KB, 8-way,
i Access: 10 cycles
L2 unified cache L2 unified cache " L3 unified cache:

8 MB, 16-way,

Main memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Cache Performance Metrics

» Miss Rate
» Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate

» Typical numbers (in percentages):
» 3-10% for L1

» can be quite small (e.g., < 1%) for L2, depending on size, etc.
» HitTime
» Time to deliver a line in the cache to the processor
» includes time to determine whether the line is in the cache
» Typical numbers:
» 4 clock cycle for L1
» 10 clock cycles for L2
» Miss Penalty

» Additional time required because of a miss
» typically 50-200 cycles for main memory (Trend: increasing!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Let’s think about those numbers

» Huge difference between a hit and a miss

» Could be 100x, if just L1 and main memory

» Would you believe 99% hits is twice as good as 97%?

» Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

» Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

» This is why “miss rate” is used instead of “hit rate”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing cache-friendly code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10

Writing Cache Friendly Code

» Make the common case go fast

» Focus on the inner loops of the core functions

» Minimize the misses in the inner loops
» Repeated references to variables are good (temporal locality)

» Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1"

Matrix Multiplication Example

Variable sum

» Description: . held in
» Multiply N x N matrices /* ijk */ register
> Matrix el for (i=0; i<n; i++) {
atrix elements are for (3=0; 4<n; J++) { /
doubles (8 bytes) sum = 0.0; <€
» O(N?3) total operations for (k=0; k<n; k++)
» N reads per source element sum += a[i][k] * b[k][]];
c[i][jJ] = sum;
» N values summed per)
destination
» but may be able to hold matmult/mm.c
in register

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Miss Rate Analysis for Matrix Multiply

» Assume:
» Block size = 32B (big enough for four doubles)
» Matrix dimension (N) is very large
» Approximate 1/N as 0.0
» Cacheis not even big enough to hold multiple rows
» Analysis Method:

» Look at access pattern of inner loop

(= X

C A B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Layout of C Arrays in Memory (review)

» Carrays allocated in row-major order
» each row in contiguous memory locations
» Stepping through columns in one row:
» for (1 = 0; 1 < N; 1i++)
sum += a[0][1];
P accesses successive elements
» if block size (B) > sizeof(aij) bytes, exploit spatial locality
» miss rate = sizeof(aij) /B
» Stepping through rows in one column:
» for (1 = 0; 1 < n; 1i++)
sum += a[1][0];
» accesses distant elements
» no spatial locality!
» missrate=1 (i.e. 100%)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (3=0; j<n; j++) { (*Il
sum = 0.0; L;;;} (i,)
for (k=0; k<n; k++) (i,*) -
A B

sum += a[i] [k] * b[k][]j]; C

c[1][]] = sum;
} bt
}

matmult/mm.c § Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:
A B C
0.25 1.0 0.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k]I[j];
c[i] [J] = sum
}
}

matmult/mm. c

Misses per inner loop iteration:

A B C
0.25 1.0 0.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inner loop:
.
(i,j)
g(n*) ﬁt .
A B C
Row-wise Column- Fixed
wise

16

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i,k) E(k *)g
r = a[i] [k]; D (i,%)
B C

for (j=0; j<n; j++) A

c[1][J] += r * b[k][]]’
} L]

matmult/mm.c Fixed Row-wise Row-wise

Inner loop:

Misses per inner loop iteration:

A B C
0.0 0.25 0.25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i k) (k,*)
r = a[i] [k]; . Efffj ’ L;;;J(L*)
B C

for (j=0; j<n; Jj++) A
c[i][j] += r * b[k][]]~

} T

matmult/mm.c Fixed Row-wise Row-wise

Inner loop:

Misses per inner loop iteration:

A B C
0.0 0.25 0.25

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Matrix Multiplication (jki)

VR TREY, Inner loop:
for (j=0; j<n; j++) { (*,k) (*.j)

for (k=0; k<n; k++) { (ki)
r = bk][§]; ” S H

for (i=0; i<n; i++)

S _ A B C
c[i][j] += a[i] [k] * r;
}
matmult/mm.c Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Matrix Multiplication (kji

/* kji */
for (k=0; k<n; k++) {

for (j=0; j<n; Jj++) { (* k) (*,J)
r = b[k][j]; ” ‘(k,j) ‘ |
for (i=0; i<n; 1i++) u
c[i][]J] += ali]l[k] * r; A B C

| Pt
matmult/mm. c

Column- Fixed Column-
wise wise

Inner loop:

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (j=0; j<n; Jj++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][]j]’
c[i] [3] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; j++)
c[i] [J] += r * b[k][]J];
}
}

for (j=0; j<n; Jj++) {
for (k=0; k<n; k++) {
r = b[k][3];
for (i=0; i<n; i++)
c[i] [J] += al[i]l[k] * r;

ijk (& jik):
e 2 |oads, O stores
e misses/iter = 1.25

kij (& ikj):
e 2 |oads, 1 store
e misses/iter = 0.5

jki (& kji):
e 2 |oads, 1 store
* misses/iter = 2.0

21

Core i7 Matrix Multiply Performance

100

o —
=T wis
)

b jii |
= kji
cad |
= jik
= kij
2 1K)

Cycles per inner loop iteration
)

[.
l
S\
it
>4
b
»
o+
i
]
E‘;. :
=:
~i|
2.
L

50 100 150 200 250 300 350 40 450 500 550 600 650 700
Array size (n)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Use blocking to improve temporal
locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

23

Example: Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

Il
*

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Cache Miss Analysis

» Assume:

» Matrix elements are doubles
» Cache block = 8 doubles

» Cache size C << n (much smaller than n)

» First iteration: A

» n/8+n=9n/8 misses .

Il
*

» Afterwards in cache:
(schematic)

Il
*

8 wide
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Cache Miss Analysis

» Assume:
» Matrix elements are doubles
» Cache block = 8 doubles
» Cache size C << n (much smaller than n)

n
» Second iteration: A
n/8 + n =9n/8 misses
- *

8 wide

» Total misses:
» 9n/8 * n?=(9/8) * n3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i+=B)
for (j = 0; jJ < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; i++)
for (j1 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+j1l] += a[il*n + kl]*b[kl*n + j1l];
} matmult/bmm. c

j1

C a b C

— K +
] i1 [

A
Block size B x B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective,

27

Cache Miss Analysis

» Assume:
» Cache block = 8 doubles
» Cache size C << n (much smaller than n)
» Three blocks gy fit into cache: 3B* < C

» First (block) iteration: Z/\B Plocks
» B?/8 misses for each block] T E)
» 2n/B* B?/8=nB/4 —
(omitting matrix c) = * =

Block size Bx B

» Afterwards in cache
[] EERER

(schematic)

Il
*

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Cache Miss Analysis

» Assume:
» Cache block = 8 doubles
» Cache size C << n (much smaller than n)
» Three blocks gy fit into cache: 3B* < C

» Second (block) iteration: Z{ B blocks

» Same as first iteration] EEEEE - o
» 2n/B* B?/8 = nB/4

» Total misses:
» nB/4* (n/B)?=n3/(4B)

Block size B x B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Blocking Summary

» No blocking: (9/8) * n3
» Blocking: 1/(4B) * n3

» Suggest largest possible block size B, but limit 3B2 < C!

» Reason for dramatic difference:

» Matrix multiplication has inherent temporal locality:
» Input data: 3n%, computation 2n3
» Every array elements used O(n) times!

» But program has to be written properly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Cache Summary

» Cache memories can have significant performance impact

» You can write your programs to exploit this!
» Focus on the inner loops, where bulk of computations and memory
accesses occur.
» Try to maximize spatial locality by reading data objects with sequentially
with stride 1.

» Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

