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Cache writes and performance
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What about writes?

▶ Multiple copies of data exist:
▶ L1, L2, L3, Main Memory, Disk

▶ What to do on a write-hit?
▶ Write-through (write immediately to memory)

▶ Write-back (defer write to memory until replacement of line)

▶ Need a dirty bit (line different from memory or not)

▶ What to do on a write-miss?
▶ Write-allocate (load into cache, update line in cache)

▶ Good if more writes to the location follow

▶ No-write-allocate (writes straight to memory, does not load into cache)

▶ Typical
▶ Write-through + No-write-allocate

▶ Write-back + Write-allocate
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Intel Core i7 Cache Hierarchy

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
L1 i-cache and d-cache:

32 KB,  8-way, 
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way, 
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for 
all caches. 
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Cache Performance Metrics

▶ Miss Rate
▶ Fraction of memory references not found in cache (misses / accesses)

= 1 – hit rate

▶ Typical numbers (in percentages):

▶ 3-10% for L1
▶ can be quite small (e.g., < 1%) for L2, depending on size, etc.

▶ Hit Time
▶ Time to deliver a line in the cache to the processor

▶ includes time to determine whether the line is in the cache

▶ Typical numbers:

▶ 4 clock cycle for L1
▶ 10 clock cycles for L2

▶ Miss Penalty
▶ Additional time required because of a miss

▶ typically 50-200 cycles for main memory (Trend: increasing!)
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Let’s think about those numbers

▶ Huge difference between a hit and a miss
▶ Could be 100x, if just L1 and main memory

▶ Would you believe 99% hits is twice as good as 97%?
▶ Consider: 

cache hit time of 1 cycle
miss penalty of 100 cycles

▶ Average access time:

 97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles

 99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles

▶ This is why “miss rate” is used instead of “hit rate”
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Writing cache-friendly code
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Writing Cache Friendly Code

▶ Make the common case go fast
▶ Focus on the inner loops of the core functions

▶ Minimize the misses in the inner loops
▶ Repeated references to variables are good (temporal locality)

▶ Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified 
through our understanding of cache memories
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Matrix Multiplication Example

▶ Description:
▶ Multiply N x N matrices

▶ Matrix elements are 
doubles (8 bytes)

▶ O(N3) total operations

▶ N reads per source element

▶ N values summed per 
destination

▶ but may be able to hold 
in register

/* ijk */
for (i=0; i<n; i++)  {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++) 
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
} 

matmult/mm.c

Variable sum
held in 
register
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Miss Rate Analysis for Matrix Multiply

▶ Assume:
▶ Block size = 32B (big enough for four doubles)

▶ Matrix dimension (N) is very large

▶ Approximate 1/N as 0.0

▶ Cache is not even big enough to hold multiple rows

▶ Analysis Method:
▶ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x
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Layout of C Arrays in Memory (review)

▶ C arrays allocated in row-major order
▶ each row in contiguous memory locations

▶ Stepping through columns in one row:
▶ for (i = 0; i < N; i++)

sum += a[0][i];
▶ accesses successive elements

▶ if block size (B) > sizeof(a
ij
) bytes, exploit spatial locality

▶ miss rate = sizeof(a
ij
) / B

▶ Stepping through rows in one column:
▶ for (i = 0; i < n; i++)

sum += a[i][0];
▶ accesses distant elements

▶ no spatial locality!

▶ miss rate = 1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++)  {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++) 
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
} 

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C
0.25 1.0 0.0

matmult/mm.c
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Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C
0.25 1.0 0.0

matmult/mm.c
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Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];   
  }
}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C
0.0 0.25 0.25

matmult/mm.c
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Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
      c[i][j] += r * b[k][j];
  }
}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C
0.0 0.25 0.25

matmult/mm.c
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Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
  }
}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

matmult/mm.c
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Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
  }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

matmult/mm.c
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj): 
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji): 
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
   sum = 0.0;
   for (k=0; k<n; k++) 
     sum += a[i][k] * b[k][j];
   c[i][j] = sum;
 }
} 

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
  r = a[i][k];
  for (j=0; j<n; j++)
   c[i][j] += r * b[k][j];   
 }
}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
   r = b[k][j];
   for (i=0; i<n; i++)
    c[i][j] += a[i][k] * r;
 }
}
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Core i7 Matrix Multiply Performance

ijk / jik

jki / kji

kij / ikj
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Use blocking to improve temporal 
locality
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Example: Matrix Multiplication

a b

i

j

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
             for (k = 0; k < n; k++)

         c[i*n + j] += a[i*n + k] * b[k*n + j];
}
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Cache Miss Analysis

▶ Assume: 
▶ Matrix elements are doubles

▶ Cache block = 8 doubles

▶ Cache size C << n (much smaller than n)

▶ First iteration:
▶ n/8 + n = 9n/8 misses

▶ Afterwards in cache:
(schematic)

*=

n

*=

8 wide
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Cache Miss Analysis

▶ Assume: 
▶ Matrix elements are doubles

▶ Cache block = 8 doubles

▶ Cache size C << n (much smaller than n)

▶ Second iteration:
▶ Again:

n/8 + n = 9n/8 misses

▶ Total misses:
▶ 9n/8 * n2 = (9/8) * n3 

n

*=

8 wide
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Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
             for (k = 0; k < n; k+=B)

 /* B x B mini matrix multiplications */
                  for (i1 = i; i1 < i+B; i++)
                      for (j1 = j; j1 < j+B; j++)
                          for (k1 = k; k1 < k+B; k++)

                      c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*

c

=
c

+

Block size B x B

matmult/bmm.c



Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis

▶ Assume: 
▶ Cache block = 8 doubles

▶ Cache size C << n (much smaller than n)

▶ Three blocks       fit into cache: 3B2 < C

▶ First (block) iteration:
▶ B2/8 misses for each block

▶ 2n/B * B2/8 = nB/4
(omitting matrix c)

▶ Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks
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Cache Miss Analysis

▶ Assume: 
▶ Cache block = 8 doubles

▶ Cache size C << n (much smaller than n)

▶ Three blocks       fit into cache: 3B2 < C

▶ Second (block) iteration:
▶ Same as first iteration

▶ 2n/B * B2/8 = nB/4

▶ Total misses:
▶ nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks
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Blocking Summary

▶ No blocking: (9/8) * n3

▶ Blocking: 1/(4B) * n3

▶ Suggest largest possible block size B, but limit 3B2 < C!

▶ Reason for dramatic difference:
▶ Matrix multiplication has inherent temporal locality:

▶ Input data: 3n2, computation 2n3

▶ Every array elements used O(n) times!

▶ But program has to be written properly
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Cache Summary

▶ Cache memories can have significant performance impact

▶ You can write your programs to exploit this!
▶ Focus on the inner loops, where bulk of computations and memory 

accesses occur. 

▶ Try to maximize spatial locality by reading data objects with sequentially 
with stride 1.

▶ Try to maximize temporal locality by using a data object as often as 
possible once it’s read from memory. 


