
Lecture 22: Virtual Memory

Brennon Brimhall

30 June 2025



Recall: Process Address Space
Kernel memory

User stack

Memory-mapped region 
for shared libraries

Run time heap (created by 
malloc)

Read/write segment 
(.data / .bss)

Read-only code segment 
(.init, .text., .rodata)

Stack pointer

Loaded from
executable

0

400000

ffffffff

2



Virtual Memory

• Abstraction of physical memory
• Purpose

• appearance of more available memory than physically exists (DRAM)
• handles disk caching / loading
• insulates memory of each process

• Page table: maps from virtual address to physical addresses
• Memory management unit (MMU):

hardware implementation of address translation

3



Virtual Memory

• Abstraction of physical memory
• Purpose

• appearance of more available memory than physically exists (DRAM)
• handles disk caching / loading
• insulates memory of each process

• Page table: maps from virtual address to physical addresses

• Memory management unit (MMU):
hardware implementation of address translation

4



Virtual Memory

• Abstraction of physical memory
• Purpose

• appearance of more available memory than physically exists (DRAM)
• handles disk caching / loading
• insulates memory of each process

• Page table: maps from virtual address to physical addresses
• Memory management unit (MMU):

hardware implementation of address translation

5



Warning

• This is going to get very complex
• Closely tied with multi-tasking (multiple processes)
• Partly managed by hardware, partly managed by software

6



Virtual addressing

7



Physical Addressing

CPU

…

0:
1:
2:
3:
4:
5:
6:
7:

Physical address (PA)

Main memory

Data

CPU chip

• So far, assumed CPU addresses physical memory

8



Virtual Addressing

CPU MMU

…

0:
1:
2:
3:
4:
5:
6:
7:

Address
translation

Virtual
address

(VA)

Physical
address

(PA)

CPU chip Main memory

Data

• Memory management unit (MMU): maps virtual to physical addresses

9



Address Space

• Virtual memory size: N = 2n bytes, e.g., 256TB
• Physical memory size: M = 2m bytes, e.g., 16GB
• Page (block of memory): P = 2p bytes, e.g., 4KB
• A virtual address can be encoded in n bits

10



Caching

11



Caching... Again?

• Yes, we already discussed caching, but for on-chip cache of DRAM
memory

• Now
• caching between RAM and disk
• driven by a large virtual memory address space
• to avoid unnecessary and duplicate loading

• Jargon
• previously “block”, now “page”
• now: “swapping” or “paging”

12



Mapping

empty
empty

empty

empty
empty

Physical memory

unallocated
cached

uncached
cached

unallocated
uncached

cached
unallocated
unallocated

unallocated

…

0:
1:
2:
3:
4:
5:
6:
7:

Virtual memory

8:

15:

Virtual pages (VP)
stored on disk

Physical pages (PP)
cached in DRAM

13



State of Virtual Memory Page

• Cached
• allocated page
• stored in physical memory

• Uncached
• allocated page
• not in physical memory

• Unallocated
• not used by virtual memory system so far

14



State of Virtual Memory Page

• Cached
• allocated page
• stored in physical memory

• Uncached
• allocated page
• not in physical memory

• Unallocated
• not used by virtual memory system so far

15



State of Virtual Memory Page

• Cached
• allocated page
• stored in physical memory

• Uncached
• allocated page
• not in physical memory

• Unallocated
• not used by virtual memory system so far

16



Page Table

• Array of page table entries (PTE)

(actually, a tree where the leaves store the page table entries)
• Each PTE maps a virtual page to a physical page
• Valid bit

• set if PTE currently maps to physical address (cached)
• not set otherwise (uncached or unallocated)

• Mapped address
• if cached: physical address in DRAM
• if not cached: physical address on disk

17



Page Table

• Array of page table entries (PTE)
(actually, a tree where the leaves store the page table entries)

• Each PTE maps a virtual page to a physical page
• Valid bit

• set if PTE currently maps to physical address (cached)
• not set otherwise (uncached or unallocated)

• Mapped address
• if cached: physical address in DRAM
• if not cached: physical address on disk

18



Page Table

• Array of page table entries (PTE)
(actually, a tree where the leaves store the page table entries)

• Each PTE maps a virtual page to a physical page

• Valid bit
• set if PTE currently maps to physical address (cached)
• not set otherwise (uncached or unallocated)

• Mapped address
• if cached: physical address in DRAM
• if not cached: physical address on disk

19



Page Table

• Array of page table entries (PTE)
(actually, a tree where the leaves store the page table entries)

• Each PTE maps a virtual page to a physical page
• Valid bit

• set if PTE currently maps to physical address (cached)
• not set otherwise (uncached or unallocated)

• Mapped address
• if cached: physical address in DRAM
• if not cached: physical address on disk

20



Page Table

• Array of page table entries (PTE)
(actually, a tree where the leaves store the page table entries)

• Each PTE maps a virtual page to a physical page
• Valid bit

• set if PTE currently maps to physical address (cached)
• not set otherwise (uncached or unallocated)

• Mapped address
• if cached: physical address in DRAM
• if not cached: physical address on disk

21



Page Table

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

22



Page Hit

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

23



Page Fault

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Valid bit = 0
• Page not in RAM

24



Page Fault

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Page is on disk

25



Page Fault

VP1

VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Make space in RAM
• Pre-empt "victim" page
• Typically out-dated cached page

26



Page Fault

VP1
VP2
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Load page into RAM

27



Page Fault

VP1
VP2
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
1
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

Virtual address

• Update page table entry

28



Allocating Pages

• What happens when we load a program?
• We need to load its executable into memory
• Similar: create data objects when program is running

(“allocating” memory)

29



Allocating Page

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null

null

0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

• Identify space in virtual memory

30



Allocating Page

VP1
VP6
VP3
VP7

VP0
VP1
VP2
VP3

Physical memory
DRAM

null0:
1:
2:
3:
4:
5:
6:
7:

Page table

Disk

0
1
0
1
0
0
1
1

VP4
VP5
VP6
VP7

Valid Address

• Map to data on disk
• do not actual load
• just create page table entries
• let virtual memory system handle

loading
⇒ On-demand loading

31



Clicker quiz!

Clicker quiz omitted from public slides

32



Process Memory

• Nothing loaded at startup

• Working set (or resident set)
• pages of a process that are currently in DRAM
• loaded by virtual memory system on demand

• Thrashing
• memory actively required by all processes

larger than physically available
• frequent swapping of memory to/from disk
• very bad: slows down machine dramatically

33



Process Memory

• Nothing loaded at startup
• Working set (or resident set)

• pages of a process that are currently in DRAM
• loaded by virtual memory system on demand

• Thrashing
• memory actively required by all processes

larger than physically available
• frequent swapping of memory to/from disk
• very bad: slows down machine dramatically

34



Process Memory

• Nothing loaded at startup
• Working set (or resident set)

• pages of a process that are currently in DRAM
• loaded by virtual memory system on demand

• Thrashing
• memory actively required by all processes

larger than physically available
• frequent swapping of memory to/from disk
• very bad: slows down machine dramatically

35



Acknowledgements

Slides adapted from materials provided by David Hovemeyer.

36


	Virtual addressing
	Caching

