=

€y

Lecture 23: Virtual Memory Il

Brennon Brimhall

2 July 2025

Memory management

One Page Table per Process

Physical memory

Process 1
0: |0
1+ A VP1 I PP2
2: |1 VP2
3: 10 \
PP7 Shared page
Process 2
0: |0
1: |1 VP1 Rl
2: |1 VP2
3: [0

Process Address Space

Kernel memory

Fffffef

User stack
¢ Stack pointer

f

Memory-mapped region
for shared libraries

f

Run time heap (created by
malloc)

Loaded from
executable

400000

Simplified Linking

400000

® Each process has its code in address 0x400000
e Easy linking: Linker can establish fixed addresses

Simplified Loading

® When loading process into memory...

® Enter .data and .text section into page table

Simplified Loading

® When loading process into memory...

® Enter .data and .text section into page table
® Mark them as invalid (= not actually in RAM)

Simplified Loading

® When loading process into memory...

® Enter .data and .text section into page table

® Mark them as invalid (= not actually in RAM)
[

Called memory mapping (more on that later)

Simplified Sharing

Shared libraries used by several
processes: e.g., stdio providing
printf, scanf, open, close, ...

Not copied multiple times
into RAM

Shared libraries

Shared libraries

Physical memory

Simplified Memory Allocation

® Process may need more memory (e.g., malloc call)
= New entry in page table
® Mapped to arbitrary pages in physical memory

® Do not have to be contiguous

Memory Protection

VPO
Process1 VP 1
VP 2

VP O
Process2 VP1
VP 2

SUP READ WRT Address

Physical memory

no | yes | no PP 6
no | yes | yes PP 4
yes | yes | yes PP 2
SUP READ WRT Address
no | yes | no PP 9
yes | yes | yes PP 6
no | yes | yes | PP 11

® Page may be kernel only: SUP=yes

® Page may be read-only (e.g., code)

/

PP O

PP 2

PP 4

PP 6

PP 9

PP 11

Address translation

Address Space

Virtual memory size: N = 2 bytes

Physical memory size: M = 2" bytes

Page (block of memory): P = 2P bytes

A virtual address can be encoded in n bits

Address Translation

Task: mapping virtual address to physical address

e virtual address (VA): used by machine code instructions
® physical address (PA): location in RAM

Formally

MAP: VA — PAU 0
where:
MAP(A) = PA if in RAM
= 0 otherwise

Note: this happens very frequently in machine code
We will do this in hardware: Memory Management Unit (MMU)

Basic Architecture

Virtual address

Physical address

Basic Architecture

Virtual address

Valid Physical page number

page table >
base register

Physical address

Basic Architecture

page table
base register

Virtual address

virtual page number | page offset

Valid Physical page number

>

>

physical page number | page offset

Physical address

Basic Architecture

Virtual address

—|¢ virtual page number | page offset

Valid Physical page number

page table
base register

Yy

valid=0?7 — |
L

-> page fault
\

physical page number | page offset |

Physical address

Page Hit

CPU chip
PTEA
_ . PTE
VA <
CPU > MMU Memory
2 PA
Data

e VA: CPU requests data at virtual address

Page Hit

CPU chip
PTEA
PTE
VA <
CPU > MMU Memory
A PA_,
Data

e VA: CPU requests data at virtual address
® PTEA: look up page table entry in page table

Page Hit

CPU chip
PTEA
PTE
VA <
CPU > MMU Memory
A PA_,
Data

e VA: CPU requests data at virtual address
® PTEA: look up page table entry in page table

® PTE: returns page table entry

Page Hit

CPU chip
PTEA
PTE
VA +
CPU > MMU : Memory
A PA
Data

VA: CPU requests data at virtual address
PTEA: look up page table entry in page table

PTE: returns page table entry

PA: get physical address from entry, look up in memory

Page Hit

CPU chip
PTEA
PTE
VA +
CPU > MMU : Memory
A PA
Data

VA: CPU requests data at virtual address
PTEA: look up page table entry in page table

PTE: returns page table entry

e Data: returns data from memory to CPU

PA: get physical address from entry, look up in memory

Page Fault

Excepti .
xeeption =I Page fault exception handler |
CPUChID e
PTEA
PTE
VA «
CPU > MMU : Memory

® VA: CPU requests data at virtual address

Page Fault

Exception =I Page fault exception handler |
CPUChID e
PTEA
PTE
VA «
CPU > MMU : Memory

® VA: CPU requests data at virtual address
® PTEA: look up page table entry in page table

Page Fault

Exception =I Page fault exception handler |
CPUChID e
PTEA
PTE
VA «
CPU > MMU : Memory

® VA: CPU requests data at virtual address
® PTEA: look up page table entry in page table

® PTE: returns page table entry

Page Fault

Excepti .
xeeption =I Page fault exception handler |
CPUChID e
PTEA
PTE
VA «
CPU > MMU : Memory

VA: CPU requests data at virtual address
PTEA: look up page table entry in page table

PTE: returns page table entry

Exception: page not in physical memory

Page Fault

Excepfion ={ Page fault exception handler |
CPUChiD
fPTEA > Victim page_
VA <« PTE <New page
CPU > MMU Memory Disk

e VA: CPU requests data at virtual address ® victim page to disk
® PTEA: look up page table entry in page table | ® new page to memory
e PTE: returns page table entry ® update page table
® Exception: page not in physical memory entries
® Page fault exception handler

Page Fault

Excepfion ={ Page fault exception handler |
CPUChiD
fPTEA > Victim page_
VA <« PTE <New page "
CPU > MMU § Memory Disk
A PA >

Data
e VA: CPU requests data at virtual address ® victim page to disk
® PTEA: look up page table entry in page table | ® new page to memory

update page table
entries

PTE: returns page table entry
® Exception: page not in physical memory

Re-do memory request

Page fault exception handler

Page Miss Exception

® Complex task

e identify which page to remove from RAM (victim page)
® |oad page from disk to RAM

® update page table entry

e trigger do-over of instruction that caused exception

e Note

® |oading into RAM very slow
® added complexity of handling in software no big deal

Clicker quiz!

Clicker quiz omitted from public slides

Refinements

Refinements

On-CPU cache

Slow look-up time

Huge address space

Putting it all together

Refinements

On-CPU cache
— integrate cache and virtual memory

Slow look-up time

Huge address space

Putting it all together

Integrating Caches and Virtual Memory

® Note
® we claim that using on-disk memory is too slow
® having data in RAM only practical solution

® Recall

® we previously claimed that using RAM is too slow
® having data in cache only practical solution

® Both true, so we need to combine

Integrating Caches and Virtual Memory

O oD e
PTEA
VA < PTE L1 :
CPU » MMU Cache| DRAM
PA .
A =
Data

® MMU resolves virtual address to physical address

® Physical address is checked against cache

Integrating Caches and Virtual Memory

. PTEA _

CPU chip
PTEA _miss? _
‘ PTE ‘
VA < L1 e
CPU > MMU Cache
PA
A =
Data

® Cache miss in page table retrieval?

= Get page table from memory

DRAM

Integrating Caches and Virtual Memory

CPU chip
PTEA | miss? | : PTEA _
___PTE _ . PTE
VA < L1 e
CPU > MMU Cache
PA_ | miss? _ PA_
4 Data
Data

® Cache miss in data retrieval?

= Get data from memory

DRAM

Refinements

On-CPU cache
— integrate cache and virtual memory

Slow look-up time
— use translation lookahead buffer (TLB)

Huge address space

Putting it all together

Look-Ups

® Every memory-related instruction must pass through MMU
(virtual memory look-up)

® \ery frequent, this has to be very fast
® | ocality to the rescue

® subsequent look-ups in same area of memory
® |ook-up for a page can be cached

Translation Lookup Buffer

® Same structure as cache
® Break up address into 3 parts

® |owest bits: offset in page
® middle bits: index (location) in cache
® highest bits: tag in cache

® Associative cache: more than one entry per index

Architecture

CPU chip

VA

9]
9
c
\4

MMU Memory

Data

® Translation lookup buffer (TLB) on CPU chip

Translation Lookup Buffer (TLB) Hit

GPUCchip
LB
A
PTEA vF’TE
CPU —2 & MMU
ry PA

Memory

® | ook up page table entry in TLB

Translation Lookup Buffer (TLB) Miss

CPUchip .
TLB
A
PTEA .
| pTE
~ IPTEA
VA ;
CPU > MMU Memory
7y PA
Data

® Page table entry not in TLB

® Retrieve page table entry from RAM

Acknowledgements

Slides adapted from materials provided by David Hovemeyer.

	Memory management
	Address translation
	Refinements

