
Lecture 29: Concurrency with pthreads

Brennon Brimhall

14 July 2025

Web server

Main web server loop:
while (1) {

int clientfd = Accept(serverfd, NULL, NULL);
if (clientfd < 0) { fatal("Error accepting client connection"); }
server_chat_with_client(clientfd, webroot);
close(clientfd);

}

Do you see any limitations of this design?

The server can only communicate with one client at a time

2

Web server

Main web server loop:
while (1) {

int clientfd = Accept(serverfd, NULL, NULL);
if (clientfd < 0) { fatal("Error accepting client connection"); }
server_chat_with_client(clientfd, webroot);
close(clientfd);

}

Do you see any limitations of this design?

The server can only communicate with one client at a time

3

Concurrency using processes

Processes created with fork can be used for concurrency, but processes are a
heavyweight abstraction requiring significant resources:

They require:

• Address space data structures
• Open file table
• Process context data
• Etc.

Scheduling a process requires switching address spaces (possibly losing useful
context built up in caches and TLB)

4

Concurrency using processes

Processes created with fork can be used for concurrency, but processes are a
heavyweight abstraction requiring significant resources:

They require:
• Address space data structures

• Open file table
• Process context data
• Etc.

Scheduling a process requires switching address spaces (possibly losing useful
context built up in caches and TLB)

5

Concurrency using processes

Processes created with fork can be used for concurrency, but processes are a
heavyweight abstraction requiring significant resources:

They require:
• Address space data structures
• Open file table

• Process context data
• Etc.

Scheduling a process requires switching address spaces (possibly losing useful
context built up in caches and TLB)

6

Concurrency using processes

Processes created with fork can be used for concurrency, but processes are a
heavyweight abstraction requiring significant resources:

They require:
• Address space data structures
• Open file table
• Process context data

• Etc.

Scheduling a process requires switching address spaces (possibly losing useful
context built up in caches and TLB)

7

Concurrency using processes

Processes created with fork can be used for concurrency, but processes are a
heavyweight abstraction requiring significant resources:

They require:
• Address space data structures
• Open file table
• Process context data
• Etc.

Scheduling a process requires switching address spaces (possibly losing useful
context built up in caches and TLB)

8

Concurrency using processes

Processes created with fork can be used for concurrency, but processes are a
heavyweight abstraction requiring significant resources:

They require:
• Address space data structures
• Open file table
• Process context data
• Etc.

Scheduling a process requires switching address spaces (possibly losing useful
context built up in caches and TLB)

9

Threads

Threads are a mechanism for concurrency within a single process/address
space

A thread is a “virtual CPU” (program counter and registers): each thread can
be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:

• Context (memory in which to save register values when thread is
suspended)

• A stack
• Thread-local storage (for per-thread variables)

10

Threads

Threads are a mechanism for concurrency within a single process/address
space

A thread is a “virtual CPU” (program counter and registers): each thread can
be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:
• Context (memory in which to save register values when thread is

suspended)

• A stack
• Thread-local storage (for per-thread variables)

11

Threads

Threads are a mechanism for concurrency within a single process/address
space

A thread is a “virtual CPU” (program counter and registers): each thread can
be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:
• Context (memory in which to save register values when thread is

suspended)
• A stack

• Thread-local storage (for per-thread variables)

12

Threads

Threads are a mechanism for concurrency within a single process/address
space

A thread is a “virtual CPU” (program counter and registers): each thread can
be executing a different stream of instructions

Compared to processes, threads are lightweight, requiring only:
• Context (memory in which to save register values when thread is

suspended)
• A stack
• Thread-local storage (for per-thread variables)

13

Pthreads

14

Pthreads

Pthreads = “POSIX threads”

Standard API for using threads on Unix-like systems

Allows:
• Creating threads and waiting for them to complete
• Synchronizing threads (more on this soon)

Can be used for both concurrency and parallelism (on multicore machines,
threads can execute in parallel)

15

Basic concepts

Some basic concepts:

pthread_t: the thread id data type, each running thread has a distinct
thread id

Thread attributes: runtime characteristics of a thread
• Many programs will just create threads using the default attributes

Attached vs. detached : a thread is attached if the program will explicitly call
pthread_join to wait for the thread to finish.

16

pthread_create

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

Creates a new thread. Thread id is stored in variable pointed-to by thread
parameter. The attr parameter specifies attributes (NULL for default
attributes.)

The created thread executes the start_routine function, which is passed arg
as its parameter.

Returns 0 if successful.

17

pthread_join

#include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

Waits for specified thread to finish. Only attached threads can be waited for.

Value returned by exited thread is stored in the variable pointed-to by retval.

18

pthread_self

#include <pthread.h>

pthread_t pthread_self(void);

Allows a thread to find out its own thread id.

19

pthread_detach

#include <pthread.h>

int pthread_detach(pthread_t thread);

Changes the specified thread to be detached, so that its resources can be
freed without another thread explicitly calling pthread_join.

20

Multithreaded web server

Third version of the example web server: mt_webserver.zip on course web
page

Features:

• Server will create a thread for each client connection
• Created threads are detached : the server program doesn’t wait for them

to complete
• No limit on number of threads that can be created
• Only the main function is different than previous versions

21

Multithreaded web server

Third version of the example web server: mt_webserver.zip on course web
page

Features:

• Server will create a thread for each client connection

• Created threads are detached : the server program doesn’t wait for them
to complete

• No limit on number of threads that can be created
• Only the main function is different than previous versions

22

Multithreaded web server

Third version of the example web server: mt_webserver.zip on course web
page

Features:

• Server will create a thread for each client connection
• Created threads are detached : the server program doesn’t wait for them

to complete

• No limit on number of threads that can be created
• Only the main function is different than previous versions

23

Multithreaded web server

Third version of the example web server: mt_webserver.zip on course web
page

Features:

• Server will create a thread for each client connection
• Created threads are detached : the server program doesn’t wait for them

to complete
• No limit on number of threads that can be created

• Only the main function is different than previous versions

24

Multithreaded web server

Third version of the example web server: mt_webserver.zip on course web
page

Features:

• Server will create a thread for each client connection
• Created threads are detached : the server program doesn’t wait for them

to complete
• No limit on number of threads that can be created
• Only the main function is different than previous versions

25

struct ConnInfo

struct ConnInfo: represents a client connection:
struct ConnInfo {

int clientfd;
const char *webroot;

};

It’s useful to pass an object containing data about the task the
thread has been assigned to the thread’s start function

26

worker function

The worker function (executed by client connection threads):
void *worker(void *arg) {

struct ConnInfo *info = arg;

pthread_detach(pthread_self());

server_chat_with_client(info->clientfd, info->webroot);
close(info->clientfd);
free(info);

return NULL;
}

A created thread detaches itself, handles the client request, closes the client
socket, frees its ConnInfo object, then returns

27

main loop

Main loop:
while (1) {

int clientfd = Accept(serverfd, NULL, NULL);
if (clientfd < 0) {

fatal("Error accepting client connection");
}

struct ConnInfo *info = malloc(sizeof(struct ConnInfo));
info->clientfd = clientfd;
info->webroot = webroot;

pthread_t thr_id;
if (pthread_create(&thr_id, NULL, worker, info) != 0) {

fatal("pthread_create failed");
}

}

28

Clicker quiz!

Clicker quiz omitted from public slides

29

Trying it out

Compile and run the server:
$ gcc -o mt_webserver main.c webserver.c csapp.c -lpthread
$./mt_webserver 30000 ./site

30

Result
Visiting URL http://localhost:30000/index.html

31

http://localhost:30000/index.html

Multithreaded programming

32

Shared memory

Main issue with writing multithreaded progams is that the threads execute in
the same address space, so they share memory

A variable written by one thread may be read by another!
• Can be useful for communication between threads
• Can also be dangerous

33

Reentrancy

Some functions are designed to use global variables:
• strtok (for tokenizing C character string, retains state between calls)
• gethostbyname returns pointer to global struct hostent object

Functions which use global variables are not reentrant

“Reentrant” means function can be safely “reentered” before a
currently-executing call to the same function completes

Non-reentrant functions are dangerous for multithreaded programs (and also
cause issues when called from recursive functions)

34

Reentrancy

Some functions are designed to use global variables:
• strtok (for tokenizing C character string, retains state between calls)
• gethostbyname returns pointer to global struct hostent object

Functions which use global variables are not reentrant

“Reentrant” means function can be safely “reentered” before a
currently-executing call to the same function completes

Non-reentrant functions are dangerous for multithreaded programs (and also
cause issues when called from recursive functions)

35

Reentrancy

Some functions are designed to use global variables:
• strtok (for tokenizing C character string, retains state between calls)
• gethostbyname returns pointer to global struct hostent object

Functions which use global variables are not reentrant

“Reentrant” means function can be safely “reentered” before a
currently-executing call to the same function completes

Non-reentrant functions are dangerous for multithreaded programs (and also
cause issues when called from recursive functions)

36

Reentrancy

Some functions are designed to use global variables:
• strtok (for tokenizing C character string, retains state between calls)
• gethostbyname returns pointer to global struct hostent object

Functions which use global variables are not reentrant

“Reentrant” means function can be safely “reentered” before a
currently-executing call to the same function completes

Non-reentrant functions are dangerous for multithreaded programs (and also
cause issues when called from recursive functions)

37

Writing reentrant functions

Tips for writing reentrant functions:

• Don’t use global variables
• Memory used by a reentrant function should be limited to

• Local variables (on stack), or
• Heap buffers not being used by other threads

• It’s a good idea to have functions receive explicit pointers to memory they
should use

38

Writing reentrant functions

Tips for writing reentrant functions:
• Don’t use global variables

• Memory used by a reentrant function should be limited to
• Local variables (on stack), or
• Heap buffers not being used by other threads

• It’s a good idea to have functions receive explicit pointers to memory they
should use

39

Writing reentrant functions

Tips for writing reentrant functions:
• Don’t use global variables
• Memory used by a reentrant function should be limited to

• Local variables (on stack), or

• Heap buffers not being used by other threads
• It’s a good idea to have functions receive explicit pointers to memory they

should use

40

Writing reentrant functions

Tips for writing reentrant functions:
• Don’t use global variables
• Memory used by a reentrant function should be limited to

• Local variables (on stack), or
• Heap buffers not being used by other threads

• It’s a good idea to have functions receive explicit pointers to memory they
should use

41

Writing reentrant functions

Tips for writing reentrant functions:
• Don’t use global variables
• Memory used by a reentrant function should be limited to

• Local variables (on stack), or
• Heap buffers not being used by other threads

• It’s a good idea to have functions receive explicit pointers to memory they
should use

42

Example: strtok vs. strtok_r

The strtok function uses an implicit global variable to keep track of progress:
char buf[] = "foo bar baz";
printf("%s\n", strtok(buf, " ")); /* prints "foo" */
printf("%s\n", strtok(NULL, " ")); /* prints "bar" */
printf("%s\n", strtok(NULL, " ")); /* prints "baz" */

The reentrant strtok_r function makes the progress variable explicit by
taking a pointer to it as a parameter:

/* same output as code example above */
char buf[] = "foo bar baz", *save;
printf("%s\n", strtok_r(buf, " ", &save));
printf("%s\n", strtok_r(NULL, " ", &save));
printf("%s\n", strtok_r(NULL, " ", &save));

Always use reentrant versions of library functions, and make your own
functions reentrant!

43

Example: strtok vs. strtok_r

The strtok function uses an implicit global variable to keep track of progress:
char buf[] = "foo bar baz";
printf("%s\n", strtok(buf, " ")); /* prints "foo" */
printf("%s\n", strtok(NULL, " ")); /* prints "bar" */
printf("%s\n", strtok(NULL, " ")); /* prints "baz" */

The reentrant strtok_r function makes the progress variable explicit by
taking a pointer to it as a parameter:

/* same output as code example above */
char buf[] = "foo bar baz", *save;
printf("%s\n", strtok_r(buf, " ", &save));
printf("%s\n", strtok_r(NULL, " ", &save));
printf("%s\n", strtok_r(NULL, " ", &save));

Always use reentrant versions of library functions, and make your own
functions reentrant!

44

Example: strtok vs. strtok_r

The strtok function uses an implicit global variable to keep track of progress:
char buf[] = "foo bar baz";
printf("%s\n", strtok(buf, " ")); /* prints "foo" */
printf("%s\n", strtok(NULL, " ")); /* prints "bar" */
printf("%s\n", strtok(NULL, " ")); /* prints "baz" */

The reentrant strtok_r function makes the progress variable explicit by
taking a pointer to it as a parameter:

/* same output as code example above */
char buf[] = "foo bar baz", *save;
printf("%s\n", strtok_r(buf, " ", &save));
printf("%s\n", strtok_r(NULL, " ", &save));
printf("%s\n", strtok_r(NULL, " ", &save));

Always use reentrant versions of library functions, and make your own
functions reentrant!

45

Synchronization

For many (but not all!) multithreaded programs, it’s useful to have explicit
communication/interaction between threads

Concurrently-executing threads can use shared data structures to communicate

But: concurrent modification of shared data is likely to lead to violated data
structure invariants, corrupted program state, etc.

Synchronization mechanisms allow multiple threads to access shared data
cooperatively

• More on this eventually
• 10 second version: queues are awesome

46

Synchronization

For many (but not all!) multithreaded programs, it’s useful to have explicit
communication/interaction between threads

Concurrently-executing threads can use shared data structures to communicate

But: concurrent modification of shared data is likely to lead to violated data
structure invariants, corrupted program state, etc.

Synchronization mechanisms allow multiple threads to access shared data
cooperatively

• More on this eventually
• 10 second version: queues are awesome

47

Synchronization

For many (but not all!) multithreaded programs, it’s useful to have explicit
communication/interaction between threads

Concurrently-executing threads can use shared data structures to communicate

But: concurrent modification of shared data is likely to lead to violated data
structure invariants, corrupted program state, etc.

Synchronization mechanisms allow multiple threads to access shared data
cooperatively

• More on this eventually
• 10 second version: queues are awesome

48

Parallel computation

49

Mandelbrot set

Assume C is a complex number, and Z0 = 0 + 0i

Iterate the following equation an arbitrary number of times, starting with Z0:

Zn+1 = Zn
2 + C

Does the magnitude of Z ever reach 2 (for any finite number of iterations)?
• No → C is in the Mandelbrot set
• Yes → C is not in the Mandelbrot set

50

Visualizing the Mandelbrot set

For some region of the complex plane, sample points and determine whether
they are in the Mandelbrot set

Assume a point C is in the set if the equation can be iterated at large number
of times without magnitude of Z reaching 2

For points C not in the set, choose a color based on number of iterations
before magnitude of Z reaches 2

51

Complex numbers

typedef struct { double real, imag; } Complex;

static inline Complex complex_add(Complex left, Complex right) {
Complex sum = { left.real+right.real, left.imag+right.imag };
return sum;

}

static inline Complex complex_mul(Complex left, Complex right) {
double a = left.real, b = left.imag, c = right.real, d = right.imag;
Complex prod = { a*c - b*d, b*c + a*d };
return prod;

}

static inline double complex_mag(Complex c) {
return sqrt(c.real*c.real + c.imag*c.imag);

}

52

Computation

Function to iterate the equation for a specific complex number,
up to a maximum number of iterations

int mandel_num_iters(Complex c) {
Complex z = { 0.0, 0.0 };
int num_iters = 0;
while (complex_mag(z) < 2.0 && num_iters < MAX_ITERS) {

z = complex_add(complex_mul(z, z), c);
num_iters++;

}
return num_iters;

}

53

Visualization

For complex numbers a + bi where −2 < a < 2 and −2 < b < 2:

54

Visualization

For complex numbers a + bi where −1.28667 < a < −1.066667 and
−0.413333 < b < −0.193333:

55

Observation

The computation for each point in the complex plane is completely
independent

• I.e., an embarrassingly parallel problem

We can speed up the computation by doing the computation for different
points in parallel on multiple CPU cores

Approach:
• Use an array to store iteration counts (one per complex number)
• Create fixed number of computation threads
• Assign a subset of array elements to each computation thread
• When all threads have finished, use iteration counts to render image

56

Fork/join parallel computation

57

Sequential computation

Core of the sequential Mandelbrot computation:
int *iters = malloc(sizeof(int) * NROWS * NCOLS);
for (int i = 0; i < NROWS; i++) {

mandel_compute_row(iters, NROWS, NCOLS,
xmin, xmax, ymin, ymax,
i);

}

The mandel_compute_row function computes iteration counts for a row of
complex numbers, storing them in the iters array

58

Fork/join: task struct, start func

typedef struct {
double xmin, xmax, ymin, ymax;
int *iters;
int start_row, skip;

} Work;

void *worker(void *arg) {
Work *work = arg;

for (int i = work->start_row; i < NROWS; i += work->skip) {
mandel_compute_row(work->iters, NROWS, NCOLS,

work->xmin, work->xmax, work->ymin, work->ymax,
i);

}

return NULL;
}

59

Fork/join: parallel computation

/* supervisor work assignment */
Work supervisor = { xmin, xmax, ymin, ymax, iters, 0, NUM_THREADS };

/* start threads */
pthread_t threads[NUM_THREADS];
Work work[NUM_THREADS];
for (int i = 0; i < NUM_THREADS; i++) {

work[i] = supervisor;
work[i].start_row = i; /* each thread has different start row */
pthread_create(&threads[i], NULL, worker, &work[i]);

}

/* wait for threads to complete */
for (int i = 0; i < NUM_THREADS; i++) {

pthread_join(threads[i], NULL);
}

60

Results

Running sequential vs. 4 threads on Core i5-3470T (dual core, hyperthreaded):
$ time ./mandelbrot -1.286667 -1.066667 -0.413333 -0.193333
Success?

real 0m2.020s
user 0m2.012s
sys 0m0.008s
$ time ./mandelbrot_par -1.286667 -1.066667 -0.413333 -0.193333
Success?

real 0m0.815s
user 0m3.054s
sys 0m0.000s

Source code on web page: mandelbrot.zip

61

Acknowledgements

Slides adapted from materials provided by David Hovemeyer.

62

	Pthreads
	Multithreaded programming
	Parallel computation

