
Lecture 32: Concurrency with processes

Brennon Brimhall

16 July 2025

Web server

Main web server loop:
while (1) {

int clientfd = Accept(serverfd, NULL, NULL);
if (clientfd < 0) { fatal("Error accepting client connection"); }
server_chat_with_client(clientfd, webroot);
close(clientfd);

}

Do you see any limitations of this design?

The server can only communicate with one client at a time

2

Web server

Main web server loop:
while (1) {

int clientfd = Accept(serverfd, NULL, NULL);
if (clientfd < 0) { fatal("Error accepting client connection"); }
server_chat_with_client(clientfd, webroot);
close(clientfd);

}

Do you see any limitations of this design?

The server can only communicate with one client at a time

3

Concurrency

In general, servers (including web servers) can receive requests from many
clients, simultaneously

Concurrency : Processing involving multiple tasks that can execute
asynchronously with respect to each other

• E.g., multiple server/client conversations could be ongoing at the same
time

It would be good if our web server could serve multiple clients concurrently

4

Concurrency vs. parallelism

Concurrency is distinct from parallelism

Consider two tasks, A and B, consisting of a sequence of instructions

A and B execute concurrently if relative ordering of instructions in A and B is
not guaranteed

• I.e., an instruction in A could happen either “before” or “after” an
instruction in B

A and B execute in parallel if instructions in A and B can execute at the same
time

• Parallel execution requires multiple processors or cores

Parallelism implies concurrency, but concurrency does not imply parallelism

5

Concurrency vs. parallelism

Concurrency is distinct from parallelism

Consider two tasks, A and B, consisting of a sequence of instructions

A and B execute concurrently if relative ordering of instructions in A and B is
not guaranteed

• I.e., an instruction in A could happen either “before” or “after” an
instruction in B

A and B execute in parallel if instructions in A and B can execute at the same
time

• Parallel execution requires multiple processors or cores

Parallelism implies concurrency, but concurrency does not imply parallelism

6

Concurrency vs. parallelism

Concurrency is distinct from parallelism

Consider two tasks, A and B, consisting of a sequence of instructions

A and B execute concurrently if relative ordering of instructions in A and B is
not guaranteed

• I.e., an instruction in A could happen either “before” or “after” an
instruction in B

A and B execute in parallel if instructions in A and B can execute at the same
time

• Parallel execution requires multiple processors or cores

Parallelism implies concurrency, but concurrency does not imply parallelism

7

Concurrency vs. parallelism

Concurrency is distinct from parallelism

Consider two tasks, A and B, consisting of a sequence of instructions

A and B execute concurrently if relative ordering of instructions in A and B is
not guaranteed

• I.e., an instruction in A could happen either “before” or “after” an
instruction in B

A and B execute in parallel if instructions in A and B can execute at the same
time

• Parallel execution requires multiple processors or cores

Parallelism implies concurrency, but concurrency does not imply parallelism

8

Concurrency with processes

9

Multi-process web server

Code on web page: mp_webserver.zip
• Only the main function is different than original webserver.zip

We’ll discuss some of the interesting implementation issues

10

Processes

We’ve seen that the fork system call makes a new child process that is a
duplicate of the parent process

• Including inheriting open files

Idea: each time the server accepts a connection, fork a child process to handle
communication with that client

Multiple child processes can be executing concurrently
• OS kernel is responsible for allocating CPU time and handling I/O

11

Processes

We’ve seen that the fork system call makes a new child process that is a
duplicate of the parent process

• Including inheriting open files

Idea: each time the server accepts a connection, fork a child process to handle
communication with that client

Multiple child processes can be executing concurrently
• OS kernel is responsible for allocating CPU time and handling I/O

12

Clicker quiz!

Clicker quiz omitted from public slides

13

Design

Issue: we may want to limit the number of simultaneous child processes
• Processes are somewhat heavyweight in terms of system resources

Before starting a child process, the server loop will wait to make sure fewer
than the maximum number of child processes are running

14

wait, SIGCHLD

Several system calls exist to allow a parent process to receive a child process’s
exit status (wait, waitpid)

If a child terminates but the parent doesn’t wait for it, it can become a zombie

A parent process can handle the SIGCHLD signal in order to be notified when a
child process exits

Idea: parent will keep a count of how many child processes are running: use
wait system call and SIGCHLD signal handler to detect when child processes
complete

15

wait, SIGCHLD

Several system calls exist to allow a parent process to receive a child process’s
exit status (wait, waitpid)

If a child terminates but the parent doesn’t wait for it, it can become a zombie

A parent process can handle the SIGCHLD signal in order to be notified when a
child process exits

Idea: parent will keep a count of how many child processes are running: use
wait system call and SIGCHLD signal handler to detect when child processes
complete

16

Signal handlers

The signal and sigaction system calls can be used to register a signal
handler function for a particular signal

Signal handler for the SIGCHLD signal, so server is notified when a child
process terminates:

/* current number of child processes running */
int g_num_procs;

void sigchld_handler(int signo) {
/* Wait for a process: use WNOHANG just in case the
* main loop already waited for the chlid process */

int wstatus;
if (waitpid(-1, &wstatus, WNOHANG) > 0 &&

(WIFEXITED(wstatus) || WIFSIGNALED(wstatus)))
g_num_procs--;

}

17

Registering a signal handler

Register the sigchld_handler function as a handler for the SIGCHLD signal:
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sa.sa_handler = sigchld_handler;
sigaction(SIGCHLD, &sa, NULL);

When a child process terminates, the OS kernel will deliver a SIGCHLD signal,
and the sigchld_handler function will be called

18

Preparing to fork

Before forking a child process, the server will wait until the number of
processes is at least one less than the maximum:

while (g_num_procs >= MAX_PROCESSES) {
int wstatus;
wait(&wstatus);
if (WIFEXITED(wstatus) || WIFSIGNALED(wstatus))

g_num_procs--;
}

int clientfd = Accept(serverfd, NULL, NULL);

g_num_procs++;
pid_t pid = fork();

(Does this work?)

19

A data race

Consider the loop to wait until g_num_procs is less than the maximum:
while (g_num_procs >= MAX_PROCESSES) {

int wstatus;
wait(&wstatus);

The thing to understand about signals is that, in general, they can be
delivered at any time

Imagine that SIGCHLD is received after checking g_num_procs but before
calling wait

Assuming that sigchld_handler detects that a child process has exited, the
call to wait is unnecessary

• If MAX_PROCESSES is 1, server is deadlocked!

20

A data race

Consider the loop to wait until g_num_procs is less than the maximum:
while (g_num_procs >= MAX_PROCESSES) {

int wstatus;
wait(&wstatus);

The thing to understand about signals is that, in general, they can be
delivered at any time

Imagine that SIGCHLD is received after checking g_num_procs but before
calling wait

Assuming that sigchld_handler detects that a child process has exited, the
call to wait is unnecessary

• If MAX_PROCESSES is 1, server is deadlocked!

21

A data race

Consider the loop to wait until g_num_procs is less than the maximum:
while (g_num_procs >= MAX_PROCESSES) {

int wstatus;
wait(&wstatus);

The thing to understand about signals is that, in general, they can be
delivered at any time

Imagine that SIGCHLD is received after checking g_num_procs but before
calling wait

Assuming that sigchld_handler detects that a child process has exited, the
call to wait is unnecessary

• If MAX_PROCESSES is 1, server is deadlocked!

22

Another data race

Consider the following seemingly innocuous statement:
g_num_procs--;

The code generated by the compiler is likely to be something similar to:
int tmp = g_num_procs;
tmp = tmp - 1;
g_num_procs = tmp;

Note that tmp would really be a register

Consider what happens if a SIGCHLD signal is received after the initial value of
g_num_procs is read, but before the updated value of tmp is stored back to
g_num_procs

• A decrement of g_num_procs (in sigchld_handler) is lost, and the
server no longer knows how many child processes are running!

23

Another data race

Consider the following seemingly innocuous statement:
g_num_procs--;

The code generated by the compiler is likely to be something similar to:
int tmp = g_num_procs;
tmp = tmp - 1;
g_num_procs = tmp;

Note that tmp would really be a register

Consider what happens if a SIGCHLD signal is received after the initial value of
g_num_procs is read, but before the updated value of tmp is stored back to
g_num_procs

• A decrement of g_num_procs (in sigchld_handler) is lost, and the
server no longer knows how many child processes are running!

24

Another data race

Consider the following seemingly innocuous statement:
g_num_procs--;

The code generated by the compiler is likely to be something similar to:
int tmp = g_num_procs;
tmp = tmp - 1;
g_num_procs = tmp;

Note that tmp would really be a register

Consider what happens if a SIGCHLD signal is received after the initial value of
g_num_procs is read, but before the updated value of tmp is stored back to
g_num_procs

• A decrement of g_num_procs (in sigchld_handler) is lost, and the
server no longer knows how many child processes are running!

25

Data race explained

Consider code implementing g_num_procs--:

// Assume tmp is a register
int tmp = g_num_procs;

tmp = tmp - 1;
g_num_procs = tmp;

26

Data race explained

Consider code implementing g_num_procs--:

// Assume tmp is a register
int tmp = g_num_procs; value of g_num_procs loaded to tmp

tmp = tmp - 1;
g_num_procs = tmp;

27

Data race explained

Consider code implementing g_num_procs--:

// Assume tmp is a register
int tmp = g_num_procs;

SIGCHLD handled, g_num_procs decremented
tmp = tmp - 1;
g_num_procs = tmp;

28

Data race explained

Consider code implementing g_num_procs--:

// Assume tmp is a register
int tmp = g_num_procs;

tmp = tmp - 1; tmp (old value of g_num_procs) decremented
g_num_procs = tmp;

29

Data race explained

Consider code implementing g_num_procs--:

// Assume tmp is a register
int tmp = g_num_procs;

tmp = tmp - 1;
g_num_procs = tmp; invalid count stored in g_num_procs

30

Data race explained

Consider code implementing g_num_procs--:

// Assume tmp is a register
int tmp = g_num_procs;

tmp = tmp - 1;
g_num_procs = tmp;

Oops!

31

Data race

A data race is a (potential) bug where two concurrently-executing paths
access a shared variable, and at least one path writes to the variable

• Paths “race” to access shared data, outcome depends on which one
“wins”

Data race is a special case of a race condition, a situation where an execution
outcome depends on unpredictable event sequencing

A data race can cause data invariants to be violated (e.g., “g_num_procs
accurately reflects the number of processes running”)

Solution: synchronization
• Implement a protocol to avoid uncontrolled access to shared data

32

Data race

A data race is a (potential) bug where two concurrently-executing paths
access a shared variable, and at least one path writes to the variable

• Paths “race” to access shared data, outcome depends on which one
“wins”

Data race is a special case of a race condition, a situation where an execution
outcome depends on unpredictable event sequencing

A data race can cause data invariants to be violated (e.g., “g_num_procs
accurately reflects the number of processes running”)

Solution: synchronization
• Implement a protocol to avoid uncontrolled access to shared data

33

Data race

A data race is a (potential) bug where two concurrently-executing paths
access a shared variable, and at least one path writes to the variable

• Paths “race” to access shared data, outcome depends on which one
“wins”

Data race is a special case of a race condition, a situation where an execution
outcome depends on unpredictable event sequencing

A data race can cause data invariants to be violated (e.g., “g_num_procs
accurately reflects the number of processes running”)

Solution: synchronization
• Implement a protocol to avoid uncontrolled access to shared data

34

sigprocmask to the rescue

Signal handler functions are a potential cause of data races because they
execute asynchronously with respect to normal program execution

• OS kernel could deliver a signal at any time

sigprocmask: allows program to block and unblock a specific signal or signals

Idea: block SIGCHLD whenever g_num_procs is being accessed by program
code

• Prevent sigchld_handler from unexpectedly modifying g_num_procs

35

sigprocmask to the rescue

Signal handler functions are a potential cause of data races because they
execute asynchronously with respect to normal program execution

• OS kernel could deliver a signal at any time

sigprocmask: allows program to block and unblock a specific signal or signals

Idea: block SIGCHLD whenever g_num_procs is being accessed by program
code

• Prevent sigchld_handler from unexpectedly modifying g_num_procs

36

sigprocmask to the rescue

Signal handler functions are a potential cause of data races because they
execute asynchronously with respect to normal program execution

• OS kernel could deliver a signal at any time

sigprocmask: allows program to block and unblock a specific signal or signals

Idea: block SIGCHLD whenever g_num_procs is being accessed by program
code

• Prevent sigchld_handler from unexpectedly modifying g_num_procs

37

blocking/unblocking SIGCHLD

toggle_sigchld function:
void toggle_sigchld(int how) {

sigset_t sigs;
sigemptyset(&sigs);
sigaddset(&sigs, SIGCHLD);
sigprocmask(how, &sigs, NULL);

}

Use to protect accesses to g_num_procs:
toggle_sigchld(SIG_BLOCK);
g_num_procs++;
toggle_sigchld(SIG_UNBLOCK);

38

Back to the web server!

Web server main loop:
while (1) {

wait_for_avail_proc();
int clientfd = accept connection from client
toggle_sigchld(SIG_BLOCK);
g_num_procs++;
toggle_sigchld(SIG_UNBLOCK);
pid_t pid = fork();
if (pid < 0) {

fatal("fork failed");
} else if (pid == 0) { /* in child */

server_chat_with_client(clientfd, webroot);
close(clientfd);
exit(0);

}
close(clientfd);

}

39

File descriptor sharing

When a subprocess is forked, the child process inherits the parent process’s file
descriptors

In the web server, the forked child process inherits clientfd, the socket
connected to the client

• Convenient, since we want the child process to handle the client’s request

Important: the parent process must close clientfd, otherwise the web server
will have a file descriptor leak

• OS kernel imposes limit on number of open files per process
• Too many file descriptors open → can’t open any more files or sockets

40

File descriptor sharing

When a subprocess is forked, the child process inherits the parent process’s file
descriptors

In the web server, the forked child process inherits clientfd, the socket
connected to the client

• Convenient, since we want the child process to handle the client’s request

Important: the parent process must close clientfd, otherwise the web server
will have a file descriptor leak

• OS kernel imposes limit on number of open files per process
• Too many file descriptors open → can’t open any more files or sockets

41

Limiting number of processes

Before calling fork, web server calls wait_for_avail_proc:
void wait_for_avail_proc(void) {

toggle_sigchld(SIG_BLOCK);
while (g_num_procs >= MAX_PROCESSES) {

int wstatus;
wait(&wstatus);
if (WIFEXITED(wstatus) || WIFSIGNALED(wstatus)) {

g_num_procs--;
}

}
toggle_sigchld(SIG_UNBLOCK);

}

Calls wait if too many processes are currently running

42

Interrupted system calls

When a program receives a signal, it can interrupt the currently-executing
system call

Special handling is required for accept system call to wait for connection
from client:

int clientfd;
do {

clientfd = accept(serverfd, NULL, NULL);
} while (clientfd < 0 && errno == EINTR);
if (clientfd < 0) {

fatal("Error accepting client connection");
}

When errno is EINTR, it indicates that the system call was interrupted

43

Async-signal safety

While we’re talking about signals...

Because of the potential of signal handlers to introduce data races into the
program, some library functions aren’t safe to call from a signal handler

Good idea to know these: man signal-safety on Linux

Standard I/O routines (printf, scanf, etc.) are not async-signal safe /

44

Putting it together

In the mp_webserver directory:
$ gcc -o mp_webserver main.c webserver.c csapp.c -lpthread
$./mp_webserver 30000 ./site

45

Result
Visiting URL http://localhost:30000/index.html:

46

http://localhost:30000/index.html

Acknowledgements

Slides adapted from materials provided by David Hovemeyer.

47

	Concurrency with processes

